ImageVerifierCode 换一换
格式:DOC , 页数:7 ,大小:29KB ,
资源ID:9073450      下载积分:10 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/9073450.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(数据挖掘在电子商务应用中的调研报告.doc)为本站上传会员【仙人****88】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

数据挖掘在电子商务应用中的调研报告.doc

1、 调 研 报 告 调研题目:关于数据挖掘在电子商务中 应用的调研报告 指导老师: 学生姓名: 学 号: 西安交通大学软件学院 2016年3月21日 关于数据挖掘在电子商务中应用的 调研报告 摘  要 电子商务正处在蓬勃发展的大好时期,它所产生的丰富的信息资源,为数据挖掘

2、的应用开辟了广阔的应用舞台。本文通过优化企业资源、管理客户数据、评估商业信用、确定异常事件四个方面来阐述数据挖掘在电子商务中的应用,揭示了数据挖掘在电子商务中的广阔的应用前景。 关键词:电子商务;数据挖掘;调查报告 目 录 一、 概述 随着网络技术和数据库技术的成熟,全球传统商务正经历一次重大变革,向电子商务全速挺进。电子商务是商业领域的一种新兴商务模式,它是以网络为平台,以现代信

3、息技术为手段,以经济效益为中心的现代化商业运转模式,其最终目标是实现商务活动的网络化、自动化与智能化。电子商务的产生改变了企业的经营理念、管理方式和支付手段,给社会的各个领域带来了巨大的变革。随着网络技术的迅猛发展和社会信息化水平的提高,电子商务显示出巨大的市场价值和发展潜力。 当电子商务在企业中得到应用时,企业信息系统将产生大量数据,并且迫切需要将这些数据转换成有用的信息和知识,为企业创造更多潜在的利润,数据挖掘概念就是从这样的商业角度开发出来的。数据挖掘是一种新的商业信息处理技术,其主要特点是对商业数据库中的大量业务数据进行抽取、转换、分析和其他模型化处理,从中提取辅助商业决策的关键性数

4、据。利用功能强大的数据挖掘技术,可以使企业把数据转化为有用的信息帮助决策,从而在市场竞争中获得优势地位。 二、 数据挖掘在电子商务中的应用 1.优化企业资源   节约成本是企业盈利的关键。基于数据挖掘技术,实时、全面、准确地掌握企业资源信息,通过分析历史的财务数据、库存数据和交易数据,可以发现企业资源消耗的关键点和主要活动的投入产出比例,从而为企业资源优化配置提供决策依据,例如降低库存、提高库存周转率、提高资金使用率等。通过对Web数据挖掘,快速提取商业信息,使企业准确地把握市场动态,极大地提高企业对市场变化的响应能力和创新能力,使企业最大限度地利用人力资源、物质资源和信息资源,

5、合理协调企业内外部资源的关系,产生最佳的经济效益。促进企业发展的科学化、信息化和智能化。   例如:美国运通公司(American Express)有一个用于记录信用卡业务的数据库,数据量达到54亿字符,并仍在随着业务进展不断更新。运通公司通过对这些数据进行挖掘,制定了“关联结算(Relation ship Billing)优惠”的促销策略,即如果一个顾客在一个商店用运通卡购买一套时装,那么在同一个商店再买一双鞋,就可以得到比较大的折扣,这样既可以增加商店的销售量,也可以增加运通卡在该商店的使用率。   2.管理客户数据   随着“以客户为中心”的经营理念的不断深入人心,分析客户、了解客

6、户并引导客户的需求已成为企业经营的重要课题。基于数据挖掘技术,企业将最大限度地利用客户资源,开展客户行为的分析与预测,对客户进行分类。有助于客户盈利能力分析,寻找潜在的有价值的客户,开展个性化服务,提高客户的满意度和忠诚度。通过Web资源的挖掘,了解客户的购买习惯和兴趣,从而改善网站结构设计,推出满足不同客户的个性化网页。   利用数据挖掘可以有效地获得客户。比如通过数据挖掘可以发现购买某种商品的消费者是男性还是女性,学历、收入如何,有什么爱好,是什么职业等等。甚至可以发现不同的人在购买该种商品的相关商品后多长时间有可能购买该种商品,以及什么样的人会购买什么型号的该种商品等等。在采用了数据挖

7、掘后,针对目标客户发送的广告的有效性和回应率将得到大幅度的提高,推销的成本将大大降低。同时,在客户数据挖掘的基础上,企业可以发现重点客户和评价市场性能,制定个性化营销策略,拓宽销售渠道和范围,为企业制定生产策略和发展规划提供科学的依据。通过呼叫中心优化与客户沟通的渠道,提高对客户的响应效率和服务质量,促进客户关系管理的自动化和智能化。   成功案例:美国的读者文摘(Reader‘s Digest)出版公司运行着一个积累了40年的业务数据库,其中容纳有遍布全球的一亿多个订户的资料,数据库每天24小时连续运行,保证数据不断得到实时的更新,正是基于对客户资料数据库进行数据挖掘的优势,使读者文摘出版

8、公司能够从通俗杂志扩展到专业杂志、书刊和声像制品的出版和发行业务,极大地扩展了自己的业务。   3.评估商业信用   低劣的信用状况是影响商业秩序的突出问题,已经引起世人的广泛关注。由于网上诈骗现象层出不穷,企业财务“造假”现象日益严重,信用危机成为制约电子商务发展的重要因素。利用数据挖掘技术对企业经营进行跟踪,开展企业的资产评估、利润收益分析和发展潜力预测,构建完善的安全保障体系,实施网上全程监控,强化网上交易和在线支付的安全管理。基于数据挖掘的信用评估模型,对交易历史数据进行挖掘,发现客户的交易数据特征,建立客户信誉度级别,有效地防范和化解信用风险,提高企业信用甄别与风险管理的水平和能

9、力。   4.确定异常事件   在许多商业领域中,异常事件具有显著的商业价值,如客户流失、银行的信用卡欺诈、电信中移动话费拖欠等。通过数据挖掘中的奇异点分析可以迅速准确地甄别这些异常事件,为企业采取决策提供依据,减少企业不必要的损失。 三、总结   电子商务是现代信息技术发展的必然结果,也是未来商业运作模式的必然选择。电子商务领域具有丰富的信息资源,为数据挖掘的应用开辟了广阔的应用舞台。数据挖掘将为电子商务提供有力的技术支持,极大地促进电子商务的发展与普及,推动电子商务的应用进程。数据挖掘技术作为电子商务的重要应用技术之一,将为正确的商业决策提供强有力的支持和可靠的保证,是电子商务不可缺少的重要工具,有着广阔的发展前景。

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2026 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服