ImageVerifierCode 换一换
格式:DOCX , 页数:11 ,大小:362.24KB ,
资源ID:9008342      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/9008342.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请。


权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4009-655-100;投诉/维权电话:18658249818。

注意事项

本文(黎曼猜想原始论文中文译注-《论小于某给定值的素数的个数》(1).docx)为本站上传会员【s4****5z】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

黎曼猜想原始论文中文译注-《论小于某给定值的素数的个数》(1).docx

1、论小于某给定值的素数的个数(黎曼提出黎曼猜想的原始论文)黎曼(Riemann)原稿 谢国芳(Roy Xie)译注Email:roixie承蒙(柏林)科学院接纳我为通讯院士,我想表达被赐予这份殊荣的感谢之情的最好方式是立即利用由此得到的许可向其通报一项关于素数分布密度的研究,考虑到高斯和狄利克雷曾长期对此问题抱有浓厚的兴趣,它似乎并不是完全配不上这样性质的一个报告。我以欧拉的发现、即下面这个等式作为本研究的起点:其中等式左边的取遍所有质数,等式右边的取遍所有自然数,我将用表记由上面这两个级数(当它们收敛时)表示的复变量的函数。注1: 即定义复变函数 上面这两个级数只有当的实部大于1时才收敛,但很

2、容易找到一个(对任意)总是有效的函数的表达式。注2:用现代数学语言讲,即要对复变函数进行解析延拓,而解析延拓的最好方法是寻找一个该函数的更广泛有效的表示如积分表示或适当的函数方程。利用等式注3:是高斯引入的伽玛函数记号,现在一般把伽玛函数记作,令积分号中的哑变量即可导出上式。可得 注4: 现在考虑积分注5:按现代数学记号,该积分应记成 或(考虑到一般用z表示复数), 其中的积分路径C如下面的图1所示。积分路径沿从到、包含值0但不包含被积函数的任何其他奇点的区域的正向边界进行。 注6:参见下面的图1。 图1易得该积分的值为其中我们约定在多值函数中,的取值对于负的为实数。由此即得注7: (注意复变

3、量的三角函数的定义由欧拉公式给出),按现代数学记号应记成(参见注5),其中的积分路径C如上面图1所示。关于上式的详细推导参见 其中的积分由上面所给出的方式定义。现在这一等式对于任意复变量都给出了函数的值,并表明它是单值解析的,并且对于所有有限的(除了1之外)都取有限值,当等于一个负偶数时取零值。注8:实际上可证上面等式的右边是一个整函数(请读者思考如何证明),故左边也是一个整函数,注意(参见注3),而在的一级极点和的零点抵消。当的实部为负时,上面的积分可以不沿正向围绕给定值的区域进行,而是沿负向包含所有剩下的复数值的区域进行,注9:参见下面的图2,其中的大圆C的半径趋向无穷大,从而包含被积函数

4、的所有极点即分母的所有零点 2ni(n为整数),接下来的计算用现代术语说就是应用柯西的留数定理。因为该积分的值对于模无限大的复数为无限小,而在该区域内部,被积函数只有当等于的整数倍时才有奇点,于是该积分即等于负向围绕这些值的积分之和,但围绕值的积分等于,注10:被积函数在(n0)的留数等于 于是我们得到它揭示了一个和之间的关系,利用函数的已知性质,也可以将它表述为: 在变换下不变。注11:“的已知性质”即伽玛函数的余元公式和勒让德公式。上述结果的推导参见注11补。该函数的这一性质诱导我在级数的一般项中引入而不是,由此我们能得到函数的一个很方便的表达式,事实上我们有注12: (从笛卡尔开始直到黎

5、曼的时代,一个变量的平方一般用叠写该变量表示,虽然其他次数的方幂都用指数表示)。为了推导上式,只需在中作替换即可。因此,如果记即得又因为 (雅可比椭圆函数论新基础S卷第184页)注13:黎曼引入的这个函数本质上即雅可比theta函数:易见 上述恒等式即theta函数的变换公式:它最早由柯西用傅立叶分析得到,后来雅可比又用椭圆函数给出了证明,详见注13补。我们又有注14:注意在上面的最后一个等式中,我们可以明显看出 在变换下不变。( 和 都在下不变 )这样黎曼就再次推导出了的函数方程(这比前面用围道积分和留数定理的推导更简单)。若引入辅助函数函数方程可以简洁地写为 ,但更方便的做法是在中添加因子

6、这正是黎曼接下来做的),即令(为了和黎曼的记号保持一致引入数字因子1/2)因为因子消去了在处的一阶极点,因子消去了在处的极点,而的平凡零点 -2,-4,-6,.和的其余极点抵消,因此是一个整函数,且仅以的非平凡零点为零点。注意到因子显然在下不变,所以仍有函数方程 .现在设 ,于是可得或注15:黎曼定义的这个函数和现在通常使用的函数(参见上注)本质上完全相同(注意 ,参见注3),仅有的差别是黎曼以为自变量,而现在通常使用的仍以为自变量,和差一个线性变换: ,即一个90旋转加1/2的平移。这样一来,平面中的直线 就对应于平面中的实轴,zeta函数在临界直线上的零点就对应于函数的实根。注意在黎曼的

7、记号中,函数方程(见上注)就变成了,即是偶函数,故而其幂级数展开只有偶次幂,且零点关于对称分布。另外,从上面的两个积分表示也可以明显看出是偶函数(是的偶函数)。对于所有有限的,该函数的值都是有限的,并可以按的幂展开成一个快速收敛的级数,因为对于一个实部大于1的值,也是有限的,这对的其他因子的对数也同样成立,因此函数只有当的虚部位于和之间时才可能取零值。注16:即只有当的实部位于0和1之间时才可能取零值(参见上注)。方程的实部在0和之间的根的数目约等于注17:黎曼对零点数目估计的这一结果直到1895年才由Mangoldt严格证明。这是因为沿包含所有虚部位于和之间、实部位于0和之间的值的正向回路的

8、积分 (略去和同阶的小量后)的值约等于,而该积分的值等于位于此区域内的方程的根的数目乘以 注18:此即幅角原理。事实上我发现在该区域内的实根数目近似等于该数目,极有可能所有的根都是实数。对此我们自然希望能有一个严格的证明,然而在一些仓促的不成功的初步尝试之后,我暂时把寻求证明搁在一边,因为对于我接下来研究的目的来说它并不是必需的。注19:黎曼轻描淡写写下的这几句话就是著名的黎曼猜想!- 正文第一部分终 -【注11补】 由欧拉公式()可得因此(注意, 参见注3) 再用倍角公式即得到作替换后即 (1)这就是的函数方程。为了将它改写成一种对称的形式,用伽玛函数的余元公式和勒让德公式 在式(1)中作替

9、换,就得到即在变换下不变,亦即 在变换下不变。【注13补】设第一类完全椭圆积分 分别称为雅可比椭圆函数或椭圆积分的模(modulus)和补模。令,有将模和补模互换又有两式相比即得 . - 未完待续(to be continued)-【译者和注释者简介】 谢国芳,浙江绍兴人,独立语言学者和数学研究者,创立了外语解密学习法,著有解密英语学外语从零点到绝顶的最速路经、日语汉字读音规律揭秘、破解韩国语单词的奥秘等,建有以传播外语和数学知识与文化为宗旨的网站“语数之光”。已发表的数学和物理方面的论文有:1. D 函数的一种初等推导及应用(1996年01期大学物理) 2. 量子角动量理论新探(1998年06期大学物理) 3. 球坐标D函数与的傅里叶级数表示 (2001年01期大学物理) 4. 一般三次方程的简明新求根公式和根的判别法则 (2012年第21期数学学习与研究)

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服