ImageVerifierCode 换一换
格式:DOC , 页数:5 ,大小:121.50KB ,
资源ID:8991651      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
图形码:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/8991651.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请。


权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4009-655-100;投诉/维权电话:18658249818。

注意事项

本文(小专题(八)-构造基本图形解直角三角形的实际问题.doc)为本站上传会员【仙人****88】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

小专题(八)-构造基本图形解直角三角形的实际问题.doc

1、小专题(八) 构造基本图形解直角三角形的实际问题 方法归纳: 1.解直角三角形的实际应用题时,要灵活运用转化思想,通常是根据以下方法和步骤解决:(1)有图的要将题干中的已知量在图中表示出来,找到与已知量和未知量相关联的三角形,画出平面几何图形,弄清楚已知条件中各量之间的关系;(2)若三角形是直角三角形,根据边角关系进行计算.若三角形不是直角三角形,可通过添加辅助线构造直角三角形来解决,其中作某边上的高是常用的辅助线. 2.解直角三角形的实际应用题常见图形类型及辅助线作法如图所示: 类型1 构造单一直角三角形解决实际问题 1.平放在地面上的直角三角形铁板ABC的一部分被沙堆掩埋,其

2、示意图如图所示.量得∠A为54°,∠B为36°,斜边AB的长为2.1 m,BC边上露出部分的长为0.9 m.求铁板BC边被掩埋部分CD的长.(结果精确到0.1 m,参考数据:sin54°≈0.81,cos54°≈0.59,tan54°≈1.38) 解:由题意,得∠C=180°-∠B-∠A=180°-36°-54°=90°. 在Rt△ABC中,sinA=, 则BC=AB·sinA=2.1sin54°≈2.1×0.81=1.701, 则CD=BC-BD=1.701-0.9=0.801≈0.8(m). 答:CD的长约为0.8 m. 2.(湘潭中考)为了增强学生体质,学校鼓励学生多

3、参加体育锻炼,小胖同学马上行动,每天围绕小区进行晨跑锻炼.该小区外围道路近似为如图所示四边形ABCD.已知四边形ABED是正方形,∠DCE=45°,AB=100米.小胖同学某天绕该道路晨跑5圈,时间约为20分钟,求小胖同学该天晨跑的平均速度约为多少米/分?(结果保留整数,AB=≈1.41) 解:由题意可知:DE⊥BC于E,四边形ABED是正方形, ∴AD=DE=BE=AB=100米. ∵在Rt△DEC中,∠C=45°, ∴EC=DE=100米,DC=DE≈1.41×100=141(米). ∴四边形ABCD的周长为100+100+200+141=541(米). ∴小胖的速度为(5

4、×541)÷20≈135(米/分). 答:小胖同学该天晨跑的平均速度约为135米/分. 类型2 背靠背三角形 3.(邵阳中考)如图为放置在水平桌面上的台灯的平面示意图,灯臂AO长为40 cm,与水平面所形成的夹角∠OAM为75°.由光源O射出的边缘光线OC,OB与水平面所形成的夹角∠OCA,∠OBA分别为90°和30°,求该台灯照亮水平面的宽度BC(不考虑其他因素,结果精确到0.1 cm.温馨提示:sin75°≈0.97,cos75°≈0.26,≈1.73). 解:在Rt△ACO中,sin75°==≈0.97, 解得OC≈38.8. 在Rt△BCO中,tan30°==≈

5、 解得BC≈67.3. 答:该台灯照亮水平面的宽度BC大约是67.3 cm. 4.如图,某天上午9时,向阳号轮船位于A处,观测到某港口城市P位于轮船的北偏西67.5°方向,轮船以21海里/时的速度向正北方向行驶,下午2时该船到达B处,这时观测到城市P位于该船的南偏西36.9°方向,求此时轮船所处位置B与城市P的距离.(参考数据:sin36.9°≈,tan36.9°≈,sin67.5°≈,tan67.5°≈) 解:设BC=x海里,由题意,易得 AB=21×(14-9)=105(海里), 则AC=(105-x)海里. 在Rt△BCP中,tan36.9°=, ∴PC=BC·

6、tan36.9°=x. 在Rt△ACP中,tan67.5°=, ∴PC=AC·tan67.5°=(105-x). ∴x=(105-x).解得x=80. ∴PC=x=60海里. ∴PB==100海里. 答:此时轮船所处位置B与城市P的距离约为100海里. 类型3 母子三角形 5.(张家界中考)如图,我渔政310船在南海海面上沿正东方向匀速航行,在A点观测到我渔船C在北偏东60°方向的我国某传统渔场捕鱼作业.若渔政310船航向不变,航行半小时后到达B点,观测我渔船C在东北方向上.问:渔政310船再按原航向航行多长时间,离渔船C的距离最近?(渔船C捕鱼时移动距离忽略不计,结果不取近似

7、值) 解:作CD⊥AB,交AB的延长线于D,则当渔政310船航行到D处时,离渔船C的距离最近.设CD=x, 在Rt△ACD中,∵∠ACD=60°,tan∠ACD=,∴AD=x. 在Rt△BCD中,∵∠CBD=∠BCD=45°, ∴BD=CD=x. ∴AB=AD-BD=x-x=(-1)x. 设渔政船从B航行到D需要t小时,则=, ∴=. ∴t==. 答:渔政310船再航行小时,离渔船C的距离最近. 6.(湘西中考)测量计算是日常生活中常见的问题.如图,建筑物BC的屋顶有一根旗杆AB,从地面上D点处观测旗杆顶点A的仰角为50°,观测旗杆底部B点的仰角为45°.(可用参考

8、数据:sin50°≈0.8,tan50°≈1.2) (1)若已知CD=20米,求建筑物BC的高度; (2)若已知旗杆的高度AB=5米,求建筑物BC的高度. 解:(1)由题意,得∠ACD=90°,∠BDC=45°, ∴BC=CD=20. 答:建筑物BC的高度约为20米. (2)设CD=x米,同(1)得BC=CD=x米,AC≈1.2x米, ∵AB=5米, ∴x+5=1.2x,解得x=25. ∴BC=25米. 答:建筑物BC的高度约为25米. 7.(常德中考)如图,A,B,C表示修建在一座山上的三个缆车站的位置,AB,BC表示连接缆车站的钢缆.已知A,B,C所处位置的海拔AA1,BB1,CC1分别为160米,400米,1 000米,钢缆AB,BC分别与水平线AA2,BB2所成的夹角为30°,45°,求钢缆AB和BC的总长度.(结果精确到1米) 解:在Rt△ABD中,BD=400-160=240(米),∠BAD=30°, 则AB==480(米). 在Rt△BCB2中,CB2=1 000-400=600(米),∠CBB2=45°. 则CB==600(米). ∴AB+BC=480+600≈1 329(米). 答:钢缆AB和BC的总长度约为1 329米.

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服