ImageVerifierCode 换一换
格式:DOC , 页数:11 ,大小:103KB ,
资源ID:899094      下载积分:11 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/899094.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(激光测距外文翻译.doc)为本站上传会员【胜****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

激光测距外文翻译.doc

1、Laser rangefinder A long range laser rangefinder is capable of measuring distance up to 20 km; mounted on a tripod with an angular mount. The resulting system also provides azimuth and elevation measurements. A laser rangefinder is a device which uses a laser beam to determine the distance to

2、 an object. The most common form of laser rangefinder operates on the time of flight principle by sending a laser pulse in a narrow beam towards the object and measuring the time taken by the pulse to be reflected off the target and returned to the sender. Due to the high speed of light, this techni

3、que is not appropriate for high precision sub-millimeter measurements, where triangulation and other techniques are often used. Pulse The pulse may be coded to reduce the chance that the rangefinder can be jammed. It is possible to use Doppler effect techniques to judge whether the object is

4、 moving towards or away from the rangefinder, and if so how fast. Precision The precision of the instrument is determined by the rise or fall time of the laser pulse and the speed of the receiver. One that uses very sharp laser pulses and has a very fast detector can range an object to within a

5、few millimeters. Range Despite the beam being narrow, it will eventually spread over long distances due to the divergence of the laser beam, as well as due to scintillation and beam wander effects, caused by the presence of air bubbles in the air acting as lenses ranging in size from microscopic

6、 to roughly half the height of the laser beam's path above the earth. These atmospheric distortions coupled with the divergence of the laser itself and with transverse winds that serve to push the atmospheric heat bubbles laterally may combine to make it difficult to get an accurate reading of the

7、distance of an object, say, beneath some trees or behind bushes, or even over long distances of more than 1 km in open and unobscured desert terrain. Some of the laser light might reflect off leaves or branches which are closer than the object, giving an early return and a reading which is too lo

8、w. Alternatively, over distances longer than 1200 ft (365 m), the target, if in proximity to the earth, may simply vanish into a mirage, caused by temperature gradients in the air in proximity to the heated surface bending the laser light. All these effects have to be taken into account. Calculatio

9、n The distance between point A and B is given by D=ct/2 where c is the speed of light in the atmosphere and t is the amount of time for the round-trip between A and B. where is the delay which made by the light traveling and is the angular frequency of optical modulation. Then substitute

10、the values in the equation D=ct/2,D=1/2 ct=1/2 c·φ/ω=c/(4πf) (Nπ+Δφ)=c/4f (N+ΔN)=U(N+) in this equation, U stands for the unit length. Δφ stands for the delay part which does not fulfill π. ΔN stands the decimal value. Discrimination Some instruments are able to determine multiple returns, as

11、 above. These instruments use waveform-resolving detectors, which means they detect the amount of light returned over a certain time, usually very short. The waveform from a laser pulse that hits a tree and then the ground would have two peaks. The first peak would be the distance to the tree, and t

12、he second would be the distance to the ground. Using wavefront sensing, it is possible to determine both the closest and the farthest object at a given point. This makes it possible for aircraft-mounted instruments to see "through" dense canopies[clarification needed Please explain how lasers see t

13、hrough canopies] and other semi-reflective surface such as the ocean, leading to many applications for airborne instruments such as: 1. Creating "bare earth" topographic maps - removing all trees 2. Creating vegetation thickness maps 3. Bathymetry(measuring topography under the ocean)

14、 4. Forest firehazard Technologies Time of flight - this measures the time taken for a light pulse to travel to the target and back. With the speed of light known, and an accurate measurement of the time taken, the distance can be calculated. Many pulses are fired sequentially and the average

15、 response is most commonly used. This technique requires very accurate sub-nanosecond timing circuitry. Multiple frequency phase-shift - this measures the phase shift of multiple frequencies on reflection then solves some simultaneous equations to give a final measure. Interferometry - the most

16、accurate and most useful technique for measuring changes in distance rather than absolute distances. Applications Military An American soldier with a GVS-5 laser rangefinder. A Dutch ISAF sniper team displaying their Accuracy International AWSM .338 Lapua Magnum rifle and Leica/Vectronix V

17、ECTOR IV laser rangefinder binoculars. Rangefinders provide an exact distance to targets located beyond the distance of point-blank shooting to snipers and artillery. They can also be used for military reconciliation and engineering. Handheld military rangefinders operate at ranges of 2 km up to

18、 25 km and are combined with binoculars or monoculars. When the rangefinder is equipped with a digital magnetic compass (DMC) and inclinometer it is capable of providing magnetic azimuth, inclination, and height (length) of targets. Some rangefinders can also measure a target's speed in relation to

19、the observer. Some rangefinders have cable or wireless interfaces to enable them to transfer their measurement(s) data to other equipment like fire control computers. Some models also offer the possibility to use add-on night vision modules. Most handheld rangefinders use standard or rechargeable ba

20、tteries. The more powerful models of rangefinders measure distance up to 25 km and are normally installed either on a tripod or directly on a vehicle or gun platform. In the latter case the rangefinder module is integrated with on-board thermal, night vision and daytime observation equipment. The

21、 most advanced military rangefinders can be integrated with computers. To make laser rangefinders and laser-guided weapons less useful against military targets, various military arms may have developed laser-absorbing paint for their vehicles. Regardless, some objects don't reflect laser light ve

22、ry well and using a laser rangefinder on them is difficult. 3-D Modelling This LIDAR scanner may be used to scan buildings, rock formations, etc., to produce a 3D model. The LIDAR can aim its laser beam in a wide range: its head rotates horizontally, a mirror flips vertically. The laser beam

23、is used to measure the distance to the first object on its path. Laser rangefinders are used extensively in 3-D object recognition, 3-D object modelling, and a wide variety of computer vision-related fields. This technology constitutes the heart of the so-called time-of-flight 3D scanners. In con

24、trast to the military instruments described above, laser rangefinders offer high-precision scanning abilities, with either single-face or 360-degree scanning modes. A number of algorithms have been developed to merge the range data retrieved from multiple angles of a single object to produce comp

25、lete 3-D models with as little error as possible. One of the advantages that laser rangefinders offer over other methods of computer vision is that the computer does not need to correlate features from two images to determine depth information as in stereoscopic methods. Laser rangefinders used i

26、n computer vision applications often have depth resolutions of tenths of millimeters or less. This can be achieved by using triangulation or refraction measurement techniques as opposed to the time of flight techniques used in LIDAR. Forestry Laser rangefinder TruPulse used for forest inventori

27、es (in combination with Field-Map technology) Special laser rangefinders are used in forestry. These devices have anti-leaf filters and work with reflectors. Laser beam reflects only from this reflector and so exact distance measurement is guaranteed. Laser rangefinders with anti-leaf filter are

28、used for example for forest inventories. Sports Laser rangefinders may be effectively used in various sports that require precision distance measurement, such as golf, hunting, and archery. Some of the more popular manufacturers are: Opti-logic Corporation, Bushnell, LaserTechnology, Trimble, Le

29、ica, Newcon Optik, Nikon, and Swarovski Optik. Industry production processes An important application is the use of laser Range finder technology during the automation of stock management systems and production processes in steel industry. Safety Laser rangefinders for consumers are laser cl

30、ass 1 devices and therefore are considered eyesafe. Some laser rangefinders for military use exceed the laser class 1 energy levels. History Development of the methods used in modern printed circuit boards started early in the 20th century. In 1903, a German inventor, Albert Hanson, described

31、 flat foil conductors laminated to an insulating board, in multiple layers. Thomas Edison experimented with chemical methods of plating conductors onto linen paper in 1904. Arthur Berry in 1913 patented a print-and-etch method in Britain, and in the United States Max Schoop obtained a patent[1] to f

32、lame-spray metal onto a board through a patterned mask. Charles Durcase in 1927 patented a method of electroplating circuit patterns. The Austrian Jewish engineer Paul Eisler invented the printed circuit while working in England around 1936 as part of a radio set. Around 1943 the USA began to us

33、e the technology on a large scale to make proximity fuses for use in World War II . After the war, in 1948, the USA released the invention for commercial use. Printed circuits did not become commonplace in consumer electronics until the mid-1950s, after the Auto-Sembly process was developed by the U

34、nited States Army. Before printed circuits (and for a while after their invention), point-to-point construction was used. For prototypes, or small production runs, wire wrap or turret board can be more efficient. Predating the printed circuit invention, and similar in spirit, was John Sargrove's

35、1936–1947 Electronic Circuit Making Equipment (ECME) which sprayed metal onto a Bakelite plastic board. The ECME could produce 3 radios per minute. During World War II, the development of the anti-aircraft proximity fuse required an electronic circuit that could withstand being fired from a gun,

36、and could be produced in quantity. The Centralab Division of Globe Union submitted a proposal which met the requirements: a ceramic plate would be screenprinted with metallic paint for conductors and carbon material for resistors, with ceramic disc capacitors and subminiature vacuum tubes soldered i

37、n place. Originally, every electronic component had wire leads, and the PCB had holes drilled for each wire of each component. The components' leads were then passed through the holes and soldered to the PCB trace. This method of assembly is called through-hole construction. In 1949, Moe Abramson

38、 and Stanislaus F. Danko of the United States Army Signal Corps developed the Auto-Sembly process in which component leads were inserted into a copper foil interconnection pattern and dip soldered. The patent they obtained in 1956 was assigned to the U.S. Army. [4] With the development of board lami

39、nation and etching techniques, this concept evolved into the standard printed circuit board fabrication process in use today. Soldering could be done automatically by passing the board over a ripple, or wave, of molten solder in a wave-soldering machine. However, the wires and holes are wasteful sin

40、ce drilling holes is expensive and the protruding wires are merely cut off. In recent years, the use of surface mount parts has gained popularity as the demand for smaller electronics packaging and greater functionality has grown. 激光测距仪 激光测距仪是一种设备,它采用了激光束来确定对象的距离 。激光测距仪的最常见的形式运行在窄光束激光脉冲通过发送对对

41、象和测量飞行时间原则上要反映小康的目标,并退回给发件人脉冲的时间 。由于高光的速度,这种技术是不为亚毫米级的测量精度高,在适当的三角和其他技术经常被用来。 脉冲 编码脉冲可减少测距仪可机会卡住 。 这是可能使用多普勒效应的技术,来判断该对象是否是朝向或远离测距仪,如果这样的速度有多快。 ]精密 该仪器的精度是由激光脉冲的上升或下降时间和接收器的速度。 一个使用非常尖锐的激光脉冲,并有一个非常快的探测器范围对象几毫米之内。 范围 尽管是窄的光束 ,它最终将遍布由于长距离的激光束发散 ,以及由于闪烁和光束漂移的影响,由大小不等,从镜头的空气中存在气泡引起的微观

42、到激光束的路径在地球上空大约有一半的高度。 这些大气中的扭曲与激光本身的分歧,并为推动横向风,再加上大气的热气泡横向相结合,使其很难获得一个物体的距离准确的读数,说下一些树木或灌木丛背后,或什至超过开放,视野开阔的沙漠地形中超过1公里长的距离。 激光有些人可能会反映树叶或树枝,这是比对象更紧密,从而早日回归和阅读太低。 另外,距离超过1200英尺(365米),如果在接近地球的目标,不再只是可能到由温度引起的海市蜃楼 ,在弯曲的激光加热表面附近的空气梯度消失。 所有这些影响必须加以考虑。 计算 点A和B之间的距离 D=ct/2 其中 c是光在大气中的速度和t是

43、为A和B之间的往返时间 哪里 光旅游和延迟 光调制角频率。 然后替换值的公式:D = CT / 2,= 1/2克拉= 1/2 C·φ/ω= C /(4πf)(Nπ+Δφ)= c/4f(+Δn)的=ü (+) 在这个公式中,U代表单位长度。 Δφ表示延迟部分不履行π。 ΔN代表的十进制值。 歧视 有些工具是能够确定多回报,如上。这些文书的使用波形 ,解决探测器,这意味着他们检测到的光量,在一定的时间返回,通常很短。 从击中了一棵树,然后在地面的激光脉冲的波形,将有两个高峰。 第一个高峰将树的距离,第二个会到地面的距离。 使用波前探测,这是可

44、能的,以确定最近和最远的物体在某一时间点。 这使得机载仪器看到“通过”密集的遮篷和其他半反射的表面,如海洋,导致许多应用,如空中文书: 1.创建“裸露”地球地形图 -消除所有的树木 2.创建植被厚度地图 3.水深 (下测量地形海洋 ) 4.森林火灾的危险 技术 飞行时间 -测量光脉冲的时间,前往目标和背部。 与已知的光的速度,时间的精确测量,距离可以计算出来。 许多脉冲发射顺序,是最常用的平均响应。这种方法需要非常精确的子纳秒级定时电路。 多频相移 -这个测量多个频率上反射相移,然后解决了一些联立方程组,给一个最终的措施。 干涉 -测量距离的变化,而不是绝对的距离最准确,最

45、有用的技术。 应用 军事 测距仪提供了一个空白点位于距离以外的目标拍摄狙击手和炮兵的精确距离。 手持式军用测距仪在2公里至25公里范围内运作,并结合双筒望远镜或单筒望远镜。 当测距仪配备数字磁罗盘(DMC)和倾角,它是能够提供磁方位角,倾角,目标高度(长度)。还有些测距仪可以测量目标的速度,在关系到观察员。 某些测距仪拥有有线或无线接口,使他们以他们的测量(S)数据传输到其他设备,如消防控制计算机。 有些机型还提供了可能性,使用附加的夜视模块。大多数手持测距仪使用标准或可充电电池。 测距仪测量距离可达25公里和更强大的模型通常安装在三脚架上,或直接上车或枪平台

46、 在后一种情况下的测距模块集成板上热,夜视和白天的观测设备。 可以与计算机集成最先进的军事测距仪。 为了使激光测距仪和激光制导武器打击军事目标,各种军事武器可能已开发的激光吸收其车辆的油漆。 无论如何,某些对象不反映激光非常好,对他们使用激光测距仪是困难的。 3-D建模 激光测距仪被广泛使用的3-D物体识别,三维对象建模,以及种类繁多的计算机视觉相关的领域。这项技术构成的三维扫描仪的心,所谓的飞行时间 。在以上所述的军事手段相比,激光测距仪提供高精度的扫描能力,无论是单面或360度的扫描模式。 已开发的算法,合并范围从一个单一的对象多角度检索到完整的3-D模

47、型产生尽可能少的错误数据。激光测距仪提供了计算机视觉的其他方法的优点之一是,计算机并不需要从两个图像相关的功能,以确定在深度信息的立体方法。 计算机视觉应用中使用的激光测距仪通常有十分之一毫米或以下的深度的决议。 利用三角或折射测量技术, 激光雷达技术中使用的飞行时间,而不是可以做到这一点。 林业 特殊的激光测距仪用于林业 。 这些器件具有抗叶滤波器和工作与反射 。从这个反射激光束只反映如此精确的测量距离是保证。 具有抗叶滤波器的激光测距仪用于森林资源清查的例子。 体育 激光测距仪,可有效使用的各种运动,需要精确的距离测量,如打高尔夫球,狩猎,射箭。一些比较流

48、行的厂家是:公司的Opti-逻辑,布什内尔,LaserTechnology,天宝,徕卡,新光OPTIK,尼康,施华洛世奇Optik。 工业生产流程 一个重要的应用是利用激光测距技术在库存管理系统,并在钢铁行业生产过程的自动化。 安全 消费者的激光测距仪是1类激光设备,因此被认为是eyesafe。一些用于军事用途的激光测距仪超过1类激光的能量水平 历史 发展现代印刷电路板所用的方法在20世纪初开始。在1903年,德国发明家,恒信伟业,描述平面铝箔导体层压绝缘板,多层次, 托马斯·爱迪生在1904年到麻纸电镀导体的化学方法的试验。 阿瑟·贝里在1913年申

49、请专利在英国印刷和蚀刻的方法,并在美国最大Schoop的获得专利火焰喷涂金属到董事会通过图案的口罩。 查尔斯Durcase专利电镀电路图形的方法,于1927年。 奥地利犹太工程师保罗·艾斯勒发明的印刷电路工作围绕1936年在英格兰的一部分电台一套。 围绕1943年美国开始大规模使用的技术,使接近保险丝在第二次世界大战使用。战争结束后,于1948年,美国公布的发明用于商业用途。印刷电路板没有成为消费电子产品的普及,直到20世纪50年代中期,后自动Sembly过程中被开发的美国军队 。 前印刷电路板(一会儿后,他们的发明), 点至点的建设 。为原型,或小批量生产, 绕线或炮塔板

50、可以更有效率。早于印刷电路的发明,类似的精神,是约翰Sargrove的1936年至1947年电子电路制造设备(ECME)喷洒到一个金属电木塑料板。 ECME可以产生每分钟3收音机。 二战期间, 近炸引信的反飞机发展需要一个电子枪发射,可以在生产量电路,可以承受。 全球联盟的中心实验室司提交了一份提案,其中符合要求:陶瓷板将screenprinted导体和碳材料电阻的金属漆。陶瓷圆盘电容器和微型真空管焊接到位。 原来,每一个电子元件引线和PCB钻孔为每个组件的每个线。 组件的线索,然后通过孔和焊接到PCB走线。 这种组装方法被称为通孔的施工 。在1949年,教育部艾布拉姆森和斯坦尼

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服