ImageVerifierCode 换一换
格式:DOC , 页数:5 ,大小:424KB ,
资源ID:899035      下载积分:11 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/899035.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【可****】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【可****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(上海市高二第二学期直线与圆基础知识点总结.doc)为本站上传会员【可****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

上海市高二第二学期直线与圆基础知识点总结.doc

1、直线和圆的方程1.直线的倾斜角的范围是;2.直线的倾斜角与斜率的变化关系3.直线方程五种形式:点斜式:已知直线过点斜率为,则直线方程为,它不包括垂直于轴的直线.斜截式:已知直线在轴上的截距为和斜率,则直线方程为,它不包括垂直于轴的直线. 点方向式:已知直线经过、两点,则直线方程为,它不包括垂直于坐标轴的直线.截距式:已知直线在轴和轴上的截距为,则直线方程为,它不包括垂直于坐标轴的直线和过原点的直线.一般式:任何直线均可写成(不同时为0)的形式. 提醒:直线方程的各种形式都有局限性.(如点斜式不适用于斜率不存在的直线,还有截距式呢?)直线在坐标轴上的截距可正、可负、也可为.直线两截距相等直线的斜

2、率为或直线过原点;直线两截距互为相反数直线的斜率为或直线过原点;直线两截距绝对值相等直线的斜率为或直线过原点.截距不是距离,截距相等时不要忘了过原点的特殊情形.4.直线与直线的位置关系: 平行(斜率)且(在轴上截距); 相交;(3)重合且.5.到角和夹角公式:到的角是指直线绕着交点按逆时针方向转到和直线重合所转的角,且; 与的夹角是指不大于直角的角且.6.点到直线的距离公式; 两条平行线与的距离是.7.设三角形三顶点,则重心;8.有关对称的一些结论 点关于轴、轴、原点、直线的对称点分别是,. 曲线关于下列点和直线对称的曲线方程为:点:;轴:;轴:;原点:;直线: ;直线:;直线:.9.圆的标准

3、方程:. 圆的一般方程: .特别提醒:只有当时,方程才表示圆心为,半径为的圆(二元二次方程表示圆,且).10.点和圆的位置关系的判断通常用几何法(计算圆心到直线距离).点及圆的方程.点在圆外;点在圆内;点在圆上.11.圆上一点的切线方程:点在圆上,则过点的切线方程为:; 过圆上一点切线方程为.12.过圆外一点作圆的切线,一定有两条,如果只求出了一条,那么另外一条就是与轴垂直的直线.13.直线与圆的位置关系,通常转化为圆心距与半径的关系,或者利用垂径定理,构造直角三角形解决弦长问题.相离相切相交14.圆与圆的位置关系,经常转化为两圆的圆心距与两圆的半径之间的关系.设两圆的圆心距为,两圆的半径分别

4、为:两圆相离;两圆相外切; 两圆相交;两圆相内切; 两圆内含;两圆同心.15.解决直线与圆的关系问题时,要充分发挥圆的平面几何性质的作用(如半径、半弦长、弦心距构成直角三角形).16.求解线性规划问题的步骤是:(1)根据实际问题的约束条件列出不等式;(2)作出可行域,写出目标函数(判断几何意义);(3)确定目标函数的最优位置,从而获得最优解.圆锥曲线方程1.直线与圆锥曲线的位置关系1.直线与圆锥曲线相交的弦长公式 或(弦端点,由方程消去得到,为斜率). 这里体现了解几中“设而不求”的思想;2.中心在原点,坐标轴为对称轴的椭圆,双曲线方程可设为(对于椭圆);3.抛物线的焦点弦(过焦点的弦)为,、

5、,则有如下结论:;,;4.圆锥曲线中点弦问题:遇到中点弦问题常用“韦达定理”或“点差法”求解.5.求轨迹方程的常用方法: 直接法:直接通过建立、之间的关系,构成,是求轨迹的最基本的方法. 待定系数法:可先根据条件设所求曲线的方程,再由条件确定其待定系数,代回所列的方程即可. 代入法(相关点法或转移法). 定义法:如果能够确定动点的轨迹满足某已知曲线的定义,则可由曲线的定义直接写出方程.直线、平面、简单几何体1.异面直线所成角的求法:平移法:在异面直线中的一条直线中选择一特殊点,作另一条的平行线.补形法:把空间图形补成熟悉的或完整的几何体,如正方体、平行六面体、长方体等,其目的在于容易发现两条异

6、面直线间的关系;2.直线与平面所成角:过斜线上某个特殊点作出平面的垂线段,是产生线面角的关键.3.正方体和长方体的外接球的直径等与其体对角线长;4.球的体积公式,表面积公式;掌握球面上两点、间的距离求法: 计算线段的长;计算球心角的弧度数;用弧长公式计算劣弧的长.复数1.理解复数、实数、虚数、纯虚数、模的概念和复数的几何表示.2.熟练掌握与灵活运用以下结论:且;复数是实数的条件:;.3.复数是纯虚数的条件: 是纯虚数且; 是纯虚数;是纯虚数.4.复数的代数形式:;复数的加、减、乘、除运算按以下法则进行:设,则, , .5.几个重要的结论: ;若为虚数,则.6.运算律仍然成立:; ;.7.注意以下结论:;,; .

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服