ImageVerifierCode 换一换
格式:DOC , 页数:4 ,大小:54.50KB ,
资源ID:8988472      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
图形码:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/8988472.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请。


权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4009-655-100;投诉/维权电话:18658249818。

注意事项

本文(矩形、菱形的判定.doc)为本站上传会员【pc****0】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

矩形、菱形的判定.doc

1、22.3(3)矩形、菱形的判定 教学目标 1.经历从特殊的平行四边形的性质逆向探索特殊的平行四边形判定方法的过程,掌握矩形、菱形的常用判别方法,并能运用这些知识进行有关的证明和计算. 2.通过矩形、菱形判定的探索过程,积累数学活动的经验,提高合情推理能力;结合性质和判定定理以及相关问题的证明,进一步发展逻辑思维能力和提高推理论证的表达能力. 教学重点及难点 掌握矩形、菱形的判定,知道它们之间的关系以及与平行四边形的关系.进一步发展逻辑思维能力和提高推理论证的表达能力. 教学用具准备 课件 教学过程设计 一、温故知新 1.平行四边形的判定 (5个方法) 2.矩形、菱形的

2、性质复习——有别于平行四边形的特殊性质: 矩形 菱形 四个角都是直角 四条边相等 对角线互相平分且相等 对角线互相垂直平分且每一条对角线平分一组对角 [说明]本节课研究矩形、菱形的判定.故本环节安排平行四边形的判定复习以及矩形、菱形作为特殊的平行四边形的特殊性质回顾;便于本节课的顺利开展. 二、矩形、菱形的判定探讨 思考:如何从矩形、菱形特殊的性质出发,得出矩形、菱形的判定? 定义可以作为第一条判定: 即:有一个角是直角的平行四边形是矩形. 有一组邻边相等的平行四边形是菱形. [说明] 定义是作为判定的第一依据,因此,所有的定义都可以作为第一个判定方法. 其他方法呢

3、 “1)从边;2)从角;3)从对角线”的角度考虑. 1.矩形: ——矩形的特殊性在于直角和对角线 不妨给出关于矩形判定的命题:(讨论、交流) 比如:四个角是直角的四边形是矩形. 三个角是直角的四边形是矩形. 对角线相等的平行四边形是矩形.…… 分析上述给出的命题,证明讨论; 得出矩形的判定定理:三个角是直角的四边形是矩形. 对角线相等的平行四边形是矩形. 2.菱形: ——类似矩形进行讨论. 并得出菱形的判定定理:四条边相等的四边形是菱形. 对角线互相垂直的平行四边形是

4、菱形. [说明]作为特殊的平行四边形,矩形、菱形在角、边、对角线方面都有特殊的性质.因此,引导学生不妨就从其特殊性开始考虑.矩形详加探究之后,对应得到菱形的判定方法. 3.总结矩形菱形的判定 矩形的判定 菱形的判定 四边形矩形 有三个角是直角的四边形是矩形 四边形菱形 四条边相等的四边形是菱形 平行四边形矩形 有一个角是直角的平行四边形是矩形 平行四边形菱形 有一组邻边相等的平行四边形是菱形 对角线相等的平行四边形是矩形 对角线互相垂直的平行四边形是菱形 [说明]在本环节结束时设计一个表格,将矩形的判定分别从四边形、平行四边形出发作一总结;上课时,借助PPT,缓缓

5、放出本课结论,有不错的效果. 三、定理运用, 1.例题选讲 例1:如图:矩形ABCD的对角线AC,BD相交于点O,E,F,G,H分别 在AO,BO,CO,DO上,且AE=BF=CG=DH. 求证:四边形EFGH是矩形. 分析:首先,矩形的判定方法有哪些? 其次,本题可以用哪种方法? 过程说理. 例2:已知如图:EF是□ABCD的对角线AC的垂直平分线,EF与边AD,BC分别交于点E,F. 求证:四边形AECF是菱形 分析:其一:菱形的判定方法有哪些? 其二:本题从何入手? 其三:过程探讨. 其四:过程说理. (菱形的三种判定方法对于本题都适

6、用) 2.小试牛刀 1.用两张等宽的长方形纸条,随意交叉放在一起,重合的部分构成四边形是什么四边形? 2.如图:已知BF,BE分别是∠ABC与它的邻补角的平分线,AE⊥BE于点E,AF⊥BF于点F,那么四边形AEBF是矩形吗?为什么? [说明]所选两个例题和两个习题分别围绕矩形菱形的各三个判定, 展开多种方法的讨论; 以掌握矩形、菱形的判定方法,知道它们之间的关系以及与平行四边形的关系.达到进一步发展学生逻辑思维能力和提高学生推理论证的表达能力. 四、反思小结,谈谈收获 1.这节课你学会了什么? ——矩形、菱形的判定 矩形: û 有一个角是直角的平行四边形是矩

7、形: û 有三个角是直角的四边形是矩形; û 对角线相等的平行四边形是矩形. 菱形: û 有一组邻边相等的平行四边形是菱形; û 四条边都相等的四边形是菱形; û 对角线互相垂直的平行四边形是菱形. 2.你还有什么疑惑吗? 本节课研究的是特殊的平行四边形(矩形、菱形的判定), 注意从矩形、菱形的特殊性,熟悉它的判定方法. [说明]先请学生总结判定方法;(理清思路,分别从四边形、平行四边形出发得到的三条判定);再引导学生释疑.试图引导学生养成释疑的习惯. 五、布置作业: 练习册: 习题22.3(3), 六、拓展思考,课外延伸 习题1:以△ABC的三边在BC同侧分别作

8、三个等边三角形△ABD,△BCE ,△ACF,试回答下列问题: 1) 四边形ADEF是什么四边形? 2) 当△ABC满足什么条件时,四边形ADEF是矩形? 3) 当△ABC满足什么条件时,四边形ADEF是菱形? 习题2:Rt△ABC中,∠ACB=90°,CD是高,AE是角平分线,CD、AE交于点G,EF⊥AB于点F,试问:四边形CGFE是什么四边形? [说明]选用两例:其一是矩形问题,结合等边三角形、三角形全等、平行四边形等问题解决,过渡到今天的矩形、菱形问题.这是一个更特殊的矩形.其二是一个经典问题:综合性很强.总之所选两题试图引导学生对于所学的各知识点达到融会贯通的目的;试图发展学生逻辑思维能力,观察能力等一些数学能力. 总之,通过本课,试图带领学生学会矩形、菱形的判定方法.积累数学活动的经验,提高合情推理能力;进一步发展逻辑思维能力和提高推理论证的表达能力.

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服