1、◆课前热身
1.如图,已知,那么下列结论正确的是( )
A. B. C. D.
A
C
D
B
(第2题图)
A
B
D
C
E
F
1题
2.如图所示,给出下列条件:
①; ②;
③; ④.
其中单独能够判定的个数为( )
A.1 B.2 C.3 D.4
3.已知△ABC∽△DEF,且AB:DE=1:2,则△ABC的面积与△DEF的面积之比为( )
A.1:2 B.1:4 C.2:1 D.4
2、1
4.如图,已知等边三角形ABC的边长为2,DE是它的中位线,则下面四个结论:
(1)DE=1,(2)△CDE∽△CAB,(3)△CDE的面积与△CAB的面积之比为1:4.
其中正确的有:( )
A.0个 B.1个 C.2个 D.3个
◆考点链接
一、相似三角形的定义
三边对应成_________,三个角对应________的两个三角形叫做相似三角形.
二、相似三角形的判定方法
1. 若DE∥BC(A型和X型)则______________.
2. 射影定理:若CD为Rt△ABC斜边上的高(双直角图形)
3、
则Rt△ABC∽Rt△ACD∽Rt△CBD且AC2=________,CD2=_______,BC2=__ ____.
3. 两个角对应相等的两个三角形__________.
4. 两边对应成_________且夹角相等的两个三角形相似.
5. 三边对应成比例的两个三角形___________.
三、相似三角形的性质
1. 相似三角形的对应边_________,对应角________.
2. 相似三角形的对应边的比叫做________,一般用k表示.
3. 相似三角形的对应角平分线,对应边的________线,对应边上的_______
4、线的比等于_______比,周长之比也等于________比,面积比等于_________.
◆典例精析
例1(2009山西太原)甲、乙两盏路灯底部间的距离是30米,一天晚上,当小华走到距路灯乙底部5米处时,发现自己的身影顶部正好接触路灯乙的底部.已知小华的身高为1.5米,那么路灯甲的高为 米.
甲
小华乙
例2(2008年浙江丽水)如图,在已建立直角坐标系的4×4正方形方格纸中,△划格点三角形(三角形的三个顶点都是小正方形的顶点),若以格点P,A,B为顶点的三角形与△ABC相似(全等除外),则格点P的坐标是_______.
例3 如图,已
5、知平行四边形ABCD中,E是AB边的中点,DE交AC于点F,AC,DE把平行四边形ABCD分成的四部分的面积分别为S1,S2,S3,S4.下面结论:①只有一对相似三角形;②EF:ED=1:2;③S1:S2:S3:S4=1:2:4:5.其中正确的结论是( )
A.①③ B.③ C.① D.①②
A
C
B
D
E
例4如图,在ABC中,已知DE∥BC,AD=4,DB=8,DE=3,
(1)求的值,(2)求BC的长
例5如图1,在中,,于点,点是边上一点,连接交于,交边于点.
(1)求证:;
(2)当为边中点,时,
6、如图2,求的值;
(3)当为边中点,时,请直接写出的值.
B
B
A
A
C
O
E
D
D
E
C
O
F
图1
图2
F
例6如图,梯形ABCD中,,点在上,连与的延长线交于点G.
(1)求证:;
D
C
F
E
A
B
G
6题
(2)当点F是BC的中点时,过F作交于点,若,求的长.
例7如图甲,在△ABC中,∠ACB为锐角.点D为射线BC上一动点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.
(1)如果AB=AC,∠BAC=90º.
①当点D在线段BC上时(与点B不重合),如图乙,线段CF、BD之间的位置关系为 _________ ,数量关系为 ____________ .
②当点D在线段BC的延长线上时,如图丙,①中的结论是否仍然成立,为什么?
(2)如果AB≠AC,∠BAC≠90º,点D在线段BC上运动.
试探究:当△ABC满足一个什么条件时,CF⊥BC(点C、F重合除外)?画出相应图形,并说明理由.(画图不写作法)
(3)若AC=,BC=3,在(2)的条件下,设正方形ADEF的边DE与线段CF相交于点P,求线段CP长的最大值.