ImageVerifierCode 换一换
格式:DOCX , 页数:4 ,大小:127.35KB ,
资源ID:8945987      下载积分:10 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/8945987.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(音频分类总结(算法综述).docx)为本站上传会员【仙人****88】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

音频分类总结(算法综述).docx

1、总结音频分类的算法 刚开始对音频分割还有特征提取有些自己的想法,感觉应该能够分清楚,但是当开始查阅文献的时候,发现对他们两个的概念越来越模糊。很多时候他们是重叠的。后来我在一篇文献里找到这句话。觉得应该是这个道理: 音频数据的分类是一个模式识别的问题,它包括两个基本方面:特征选择和分类。 音频分割是在音频分类的基础上从音频流中提取出不同的音频类别,也就是说在时间轴上对音频流按类别进行划分。分类是分割的前提和基础。对音频流的准确分割是最终的目的。 于是我找了一下比较典型的分类算法 比较典型的音频分类算法包括最小距离方法、支持向量机、神经网络、决策树方法和隐马尔可夫模型方法等。 1.最

2、小距离法。(典型的音频分类算法) 最小距离分类法的优点是概念直观,方法简单,有利于建立多维空间分类方法的几何概念。在音频分类中应用的最小距离分类法有k近邻(k—Nearest Neighbor,简称K—NN)方法和最近特征线方法(Nearest Feature,简称NFL))等。 k近邻方法的思想是根据未知样本X最近邻的k个样本点的类别来确定X的类别。为此,需要计算X与所有样本x。的距离d(x,x。),并且从中选出最小的k个样本作为近邻样本集合KNN,计算其中所有属于类别Wj的距离之和,并且按照以下判别规则进行分类: ,其中,C为类别集合 由于k近邻方法利用了更多的样本信息确定它的类

3、别,k取大一些有利于减少噪声的影响。但是由于k近邻方法中需要计算所有样本的距离,因此当样本数目非常大的时候,计算量就相当可观。取k=l时,k近邻方法就退化为最近邻方法。 最近特征线方法是从每一类的样本子空间中选取一些原型(Prototype)特征点,这些特征点的两两连线称为特征线(Feature Line),这些特征线的集合用来表示原先每一类的样本子空间。 设类C的原型特征点集合: ,其中Nc为类C的原型特征点数目,则对应的特征线的数目为,而类C的特征线集合 Sc i≠jl构成类C的特征线空间,它是类C的特征子空间。—般所选取的原型特征点的数目比较少,因此特征线的数目也比较少。未知样本X

4、与特征线的距离定义为x在上的投影距离,如图4所示,而X与类别C的距离为X与类C的特征线空间中的所有特征线的最短距离。 2.神经网络(Neural Network)。 在使用神经网络进行音频分类时,可以令输入层的节点与音频的特征向量相对应,而输出层的节点对应于类别Ci。,如图5所示。在训练时,通过对训练样本集中的样本进行反复学习来调节网络,从而使全局误差函数取得最小值。这样,就可以期望该网络能够对新输入的待分类样本T输出正确的分类Ci。 3.支持向量机(support Vector Machine,简称为SVM)。 支持向量机是Vapnik等人提出的以结构风险最小化原理(St

5、uctural Risk Minimization Principle)为基础的分类方法。该方法最初来自于对二值分类问题的处理,其机理是在样本空间中寻找—个将训练集中的正例和反例两类样本点分割开来的分类超平面,并取得最大边缘(正样本与负样本到超平面的最小距离),如图6所示。该方法根据核空间理论将低维的输入空间数据通过某种非线性函数(即核函数)映射到—个高维空间中,并且线性判决只需要在高维空间中进行内积运算,从而解决了线性不可分的分类问题。 根据不同的分类问题,可以选用不同的核函数,常用的核函数有三种: ① 项式核函数: ② 径向基核函数: ③ Sigmoid核函数: SVM训练

6、算法主要有三类:二次规划算法,分解算法,增量算法。 4.决策树方法 决策树是一种结构简单、搜索效率高的分类器。这类方法以信息论为基础,对大量的实例选择重要的特征建立决策树,如图7所示。 最优决策树的构造是一个NP完全(NP Comepleteness)问题,其设计原则可以形式化地表示为其中T为特定的决策树结构,F和d分别为分枝结点的特征子集和决策规则,D为所有的训练数据,,为在数据集合D上选取特征集合F和决策规则d训练得到的结构为T的决策树的分类错误的条件概率。因此,决策树的构造过程可以分为三个问题:选取合适的结构,为分枝结点选取合适的特征子集和决策规则。常用的决策树构造方法有非回溯

7、的贪心(Greedy)算法和梯度上升算法。 5.隐马尔可夫模型(Hidden Markov Model,简HMM)方法。 隐马尔可夫模型(HMM)的音频分类性能较好,它的分类对象是语音(speech)、音乐(music)以及语音和音乐的混合(speech + music)共3类数据,根据极大似然准则判定它们的类别,最优分类精度可达90.28%。 HMM本质上是一种双重随机过程的有限状态自动机(stochastic finite-state automata),它具有刻画信号的时间统计特性的能力。双重随机过程是指满足Markov分布的状态转换Markov链以及每一状态的观察输出概率密度函数,共两个随机过程。HMM可以用3元组来表示:入;(A,B,),其中A是状态Si到Sj的转换概率矩阵,B是状态的观察输出概率密度,是状态的初始分布概率。

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服