ImageVerifierCode 换一换
格式:DOCX , 页数:8 ,大小:131.62KB ,
资源ID:8925665      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
图形码:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/8925665.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请。


权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4009-655-100;投诉/维权电话:18658249818。

注意事项

本文(一或多笔画及应用问题.docx)为本站上传会员【s4****5z】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

一或多笔画及应用问题.docx

1、多笔画及应用问题 ( 在书本讲解的基础上,该课件特意给学生复习的,要求每道题弄明白思路是怎么回事,总结下解题技巧,熟悉有什么题型,难易结合,意在锻炼学生的自学能力和拓展思维) 邓同学择录编制   一笔画问题 小朋友们,你们能把下面的图形一笔画出来吗? 如果用笔在纸上连续不断又不重复,一笔画成某种图形,这种图形就叫一笔画。那么是不是所有的图形都能一笔画成呢?这一讲我们就一起来学习一笔画的规律。 典型例题 例【1】 下面这些图形,哪个能一笔画?哪个不能

2、一笔画? (1) (2) (3) (4) 分析 图(1)一笔画出,可以从图中任意一点开始画该图,画到同一点结束。 经过尝试后,可以发现图(2)不能一笔画出。 图(3)不是连通的,显然也不能一笔画出。图(4)也可以一笔画出,且从任何一点出发都可以。 通过观察,我们可以发现一个几何图形中和一点相连通的线的条数不同。由一点发出有偶数条线,那么这个点叫做偶点。相应的,由一点出发有奇数条数,则这个点叫做奇点。 再看图(1)、(4),其中每一点都是偶点,都可以一笔画,且可以从任意一点画起。而图(2)有4个奇点,2个偶点,不能一笔

3、画成。 这样我们发现,一个图形能否一笔画和这个图形奇点,偶点的个数有某种联系,到底存在什么样的关系呢,我们再看一个例题。 例【2】 下面各图能否一笔画成? (1) (2) (3) 分析 图(1)从任意一点出都可以一笔画成,因为它的每一个点都是与两条线相连的偶点。 关于图(2),经过反复试验,也可找到画法:由A B C A D C。图中B、D为偶点,A、C为奇点,即图中有两个奇点,两个偶点。要想一笔画,需从奇点出发,回到奇点。 经过尝试,图(3)无法一笔画成,而图中有4个奇点,5个偶点

4、 解 图(1)、(2)可以一笔画。 这样我们可以发现能否一笔画和奇点、偶点的数目有着紧密的关系。 如果图形只有偶点,可以以任意一点为起点,一笔画出。如果只有两个奇点,也可以一笔画出,但必须从奇点出发,由另一点结束。 如果图形的奇点个数超过两个,则图形不能一笔画出。 例【3】 下面的图形,哪些能一笔画出?哪些不能一笔画出? 分析 图(1)有两个奇点,两个偶点,可以一笔画,须由A开始或由B开始到B结束或到A结束。 图(2)有10个奇点,大于2,不能一笔画成。 图(3)有4个奇点,1个偶点,因此也不能一笔画成。 解 图(1)的画法见下图。

5、 A O B C D (1) 例【4】 下图中,图(1)至少要画几笔才能画成? 分析 图(1)有4个奇点,所以不能一笔画出。如果把它分成几个部分,而每个部分是一笔画图形,则我们就可以用最少的几笔画出这个图形。按照这样的要求,每个部分最多含有两个奇点,可以采用再两个奇点之间增加一条或者去掉一条线的方法,该奇点就变成偶点。经观察,图(1)可以切分成图(A)、(B)两个图形。这两部分都可以一笔画出,所以图(1)至少用两笔画出。 解 将图(1)分成图(A)、(B),则图(A)可由A-B-O-D-A-C-D一笔画成,图(B)由B-C一笔画成,所以图(1)至少要

6、两笔画完。 A B C D (1) A O B C D (A) B C (B) O 小结 能否一笔画成,关键在于判别奇点、偶点的个数。 一、 只有偶点,可以一笔画,并且可以以任意一点作为起点。 二、 只有两个奇点,可以一笔画,但必须以这两个奇点分别作为起点和终点。 三、 奇点超过两个,则不能一笔画。对于一些比较复杂的路线问题,可以先转化为简单的几何图形,然后根据判定是否能一笔画的方法进行解答。   二、多笔画   我们把不能一笔画成的图,归纳为多笔画.首先,我们来考虑一个不能一笔画成的图,至少用几笔才能画完呢?(为了研究的方便,我

7、们仍然只研究连通图,非连通图可转化为连通图.)   下面,我们就用简单熟悉的图来研究这个问题.通过前面的学习我们已经知道:当奇点个数不是0或2时,图不能一笔画出.因此,我们可以猜想;奇点个数是研究多笔画问题的关键。   观察下面的图形,并列出奇点的个数与笔画数(至少几笔画完此图)的关系表格。   为了表示得清楚一些,我们把图中第一笔画出的部分用实线表示,第二笔画出的部分用虚线表示,第三笔画出的部分用点线表示,其余部分请大家自己画出.   奇点个数与笔画数的关系可列表如下:   容易看出,笔画数恰等于奇点个数的一半.事实上,对于任意的连通图来说,如果有2n个奇点(

8、n为自然数),那么这个图一定可以用n笔画成.公式如下:   奇点数÷2=笔画数,即2n÷2=n。 细心的同学可能会问:2n是表示一个偶数,但假若有奇数个奇点怎么办?实际上,这种情况不可能出现,连通图中,奇点的个数只能是偶数.想一想,这是为什么呢? 多笔画的技巧: 1. 从一个奇点开始,最后到第二个奇点结束,争取第一笔多画一些。 2. 另选两个与前两个不同的奇点,从第三个奇点出发,到第四个奇点结束。 3. 另选两个与前四个不同的奇点,从第五个奇点出发,到第六个奇点结束。 依次类推。   例1 观察下面的图,看各至少用几笔画成?   例2 判断下面的图能否一笔画成

9、若不能,你能用什么方法把它改成一笔画?     例3 将下图改为一笔画.          二、应用问题(课堂讲解)   在学习了一笔画与多笔画的理论以后,我们来看看这些理论在实际问题中的应用。   例4 下图是某少年宫的平面图,共有五个大厅,相邻两厅之间都有门相通(D与E两厅除外),并且有一个入口和一个出口.问游人能否从入口入,一次不重复地穿过所有的门?如果可以,请指明穿行路线;如果不能,请你想一想,关闭哪扇门后就可以办到?     例5 下图是某个花房的平面图,它由六间展室组成,每相邻两室间有一门相通.请你设计一个出口,使参观者能够从入口处A进去,一次不重复地经过所有的门,最后由出口走出花房。     例6 下图中的每条线都表示一条街道,线上的数字表示这条街道的里数.邮递员从邮局出发,要走遍各条街道,最后回到邮局.问:邮递员怎样走,路线最合理?   例7 右图是某地区街道的平面图,图上的数字表示那条街道的长度。清晨,洒水车从A出发,要洒遍所有的街道,最后再回到A.问:如何设计洒水路线最合理?  

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服