ImageVerifierCode 换一换
格式:DOC , 页数:6 ,大小:194.50KB ,
资源ID:8925167      下载积分:10 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/8925167.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(旁切圆及应用.doc)为本站上传会员【s4****5z】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

旁切圆及应用.doc

1、旁切圆 每个三角形都有3个旁切圆,各与三角形其中一边和另外两边的延线相切。 而它们的圆心称为旁心,旁心是三角形一内角平分线和另外两外角平分线的交点,每个三角形有三个旁心,一般记为J。 在三线性坐标系中,旁心分别是-1:1:1、1:-1:1和1:1:-1。其半径分别是2S / ( − a + b + c)、2S / (a − b + c)和2S / (a + b − c),其中S表示三角形面积,a,b,c,表示3条边。 旁切圆与三角形相切的点,和三角形相对的顶点连起,三线交于一点,称为奈格尔点。 性质 三角形关于顶点A、B、C的旁切圆的半径分别是、和,其中表示三角形面积,a、b、c分

2、别是A、B、C的对边。 旁切圆和内切圆有密切的联系。它们都与九点圆相切,切点称为费尔巴哈点。三个旁心与内心组成一个垂心组,也就是说内心是三个旁心所组成的三角形的垂心,而相应的三个垂足则是旁心所对的顶点。 在右图中,I、B、C、JA四点共圆,其中IJA是这个圆的直径,而圆心PA在三角形ABC的外接圆上,并且过BC的中垂线,即等分劣弧BC。对其它两边也有同样的结果。 对于一个顶点(比如A)所对的旁切圆,三角形ABC的外接圆半径R、A所对旁切圆半径rA以及内外心间距OJA之间有如下关系:[1]:185 旁切圆与三角形的边(或其延长线)相切的点称为旁切点。从一个顶点沿着三角形的边走到与之相对的

3、旁切圆在对边的切点所用的距离必定是周长的一半,也就是说,这个顶点和它“对面”的旁切点将三角形的周界等分为两半。将三角形的每个顶点和与之相对的旁切圆关于对边的旁切点连起,则根据塞瓦定理,三线交于一点,这个点称为奈格尔点。 内切圆在一边上的切点与旁切圆在该边的切点之间的距离恰好是另外两边的差(绝对值)。比如说,A的对边:BC上面的内切点和外切点之间的距离等于。 坐标表示 在三线性坐标系中,三个旁心的坐标分别是-1:1:1、1:-1:1和1:1:-1。 在直角座标系中,若顶点的座标分别为、、,则三个旁心的座标为: 梅涅劳斯定理 梅涅劳斯(Menelaus)定理(简称梅氏定理)是由古希

4、腊数学家梅涅劳斯首先证明的。它指出:如果一条直线与△ABC的三边AB、BC、CA或其延长线交于F、D、E点,那么(AF/FB)×(BD/DC)×(CE/EA)=1。 或:设X、Y、Z分别在△ABC的BC、CA、AB所在直线上,则X、Y、Z共线的充要条件是(AZ/ZB)*(BX/XC)*(CY/YA)=1 。 定理的证明 首先给出完整的定理内容: 当直线交 三边所在直线 于点 时, 以及逆定理:在 三边所在直线上有三点 ,且 ,那么 三点共线。 注意:以上定理严格来说应该用有向线段形式,且乘积为-1;另外, 三点中有偶数个点在线段上时,才有梅氏定理,否则为塞瓦定理. 证明一

5、过点A作AG∥DF交BC的延长线于点G.则 证毕 证明二 过点C作CP∥DF交AB于P,则 BD:DC=FB:PF,CE:EA=PF:AF 两式相乘得 (AF:FB)×(BD:DC)×(CE:EA)=(AF:FB)×(FB:PF)×(PF:AF)=1 证明三 连结CF、AD,根据“两个三角形等高时面积之比等于底边之比”的性质有。 AF:FB =S△ADF:S△BDF…………(1), BD:DC=S△BDF:S△CDF…………(2), CE:EA=S△CDE:S△ADE=S△FEC:S△FEA=(S△CDE+S△FEC ):(S△ADE+S△FEA) =S

6、△CDF:S△ADF………… (3) (1)×(2)×(3)得 × × = × × 证明四 过三顶点作直线DEF的垂线AA‘,BB',CC',如图: 充分性证明: △ABC中,BC,CA,AB上的分点分别为D,E,F。 连接DF交CA于E',则由充分性可得,(AF/FB)×(BD/DC)×(CE'/E'A)=1 又∵ ∴有CE/EA=CE'/E'A,两点重合。所以 共线 推论 在△ABC的三边BC、CA、AB或其延长线上分别取L、M、N三点,又分比是λ=BL/LC、μ=CM/MA、ν=AN/NB。于是AL、BM、CN三线交于一点的充要条件是λμν=-1。(注意与

7、塞瓦定理相区分,那里是λμν=1) 此外,用该定理可使其容易理解和记忆: 第一角元形式的梅涅劳斯定理如图:若E,F,D三点共线,则 (sin∠ACF/sin∠FCB)(sin∠BAD/sin∠DAC)(sin∠CBE/sin∠ABE)=1 即图中的蓝角正弦值之积等于红角正弦值之积。 该形式的梅涅劳斯定理也很实用。 证明:可用面积法推出:第一角元形式的梅氏定理与顶分顶形式的梅氏定理等价。 第二角元形式的梅涅劳斯定理 在平面上任取一点O,且EDF共线,则(sin∠AOF/sin∠FOB)(sin∠BOD/sin∠DOC)(sin∠COE /sin∠AOE)=1。(O不与点A、

8、B、C重合) 塞瓦定理 在△ABC内任取一点O,直线AO、BO、CO分别交对边于D、E、F,则 (BD/DC)×(CE/EA)×(AF/FB)=1。 证法简介 (Ⅰ)本题可利用梅涅劳斯定理(简称梅氏定理)证明: ∵△ADC被直线BOE所截, ∴(CB/BD)*(DO/OA)*(AE/EC)=1① ∵△ABD被直线COF所截, ∴ (BC/CD)*(DO/OA)*(AF/FB)=1② ②*①得:(DB/BC)×(CE/EA)×(AO/OD)×(BC/CD)×(AF/FB)×(DO/OA)=1 ∴(DB/CD)×(CE/EA)×(AF/FB)=1 (Ⅱ)也可以利用面积关

9、系证明 ∵BD/DC=S△ABD/S△ACD=S△BOD/S△COD=(S△ABD-S△BOD)/(S△ACD-S△COD)=S△AOB/S△AOC ③ 同理 CE/EA=S△BOC/ S△AOB ④ ,AF/FB=S△AOC/S△BOC ⑤ ③×④×⑤得(BD/DC)*(CE/EA)*(AF/FB)=1 可用塞瓦定理证明的其他定理 ①利用塞瓦定理逆定理证明三角形三条高线必交于一点: 设△ABC三边的高分别为AE、BF、CD,垂足分别为D、E、F, 根据塞瓦定理逆定理,因为(AD:DB)*(BE:EC)*(CF:FA)=[(CD*cot∠BAC)/[(CD*cotABC)]*

10、[(AE*cotABC)/(AE*cotACB)]*[(BF*cotACB)/[(BF*cotBAC)]=1,所以三条高CD、AE、BF交于一点。 ②三角形三条中线交于一点(重心): 如右图:已知,D、E分别为△ABC的边BC、AC 的中点,连接AD、BE相交于点O,连接CO并延长   塞瓦定理证明三条中线交于一点 交AB于F 求证:AF=FB 证明:∵BD=DC,CE=EA ∴BD/DC=1,CE/EA=1 由塞瓦定理得 (AF/FB)*(BD/DC)*(CE/EA)=1 ∴AF/FB=1∴ AF=FB , ∴CF为AB边上的中线 ∴三角形三条中线交于一点(重心

11、 ③用塞瓦定理还可以证明三条角平分线交于一点 此外,可用定比分点来定义塞瓦定理: 在△ABC的三边BC、CA、AB或其延长线上分别取L、M、N三点,又分比是λ=BL/LC、μ=CM/MA、ν=AN/NB。于是AL、BM、CN三线交于一点的充要条件是λμν=1。(注意与梅涅劳斯定理相区分,那里是λμν=-1) 塞瓦定理推论 1.塞瓦定理角元形式 AD,BE,CF交于一点的充分必要条件是: (sin∠BAD/sin∠DAC)*(sin∠ACF/sin∠FCB)*(sin∠CBE/sin∠EBA)=1 由正弦定理及三角形面积公式易证 2.如图,对于圆周上顺次6点A,B,C,D

12、E,F,直线AD,BE,CF交于一点的充分必要条件是: (AB/BC)×(CD/DE)×(EF/FA)=1 由塞瓦定理的角元形式,正弦定理及圆弦长与所对圆周角关系易证。 数学意义 使用塞瓦定理可以进行直线形中线段长度比例的计算,其逆定理还可以用来进行三点共线、三线共点等问题的判定方法,是平面几何学以及射影几何学中的一项基本定理,具有重要的作用。塞瓦定理的对偶定理是梅涅劳斯定理。 记忆方法 塞瓦定理的优点多多,但是却不是特别好记,这里有一个方法分享给大家 (BD/DC)*(CE/EA)*(AF/FB)=1 相当于BD*CE*AF=DC*EA*FB 各位发现等式左右两端字母竟然是一样的! 可以如下表述,在记忆(BD/DC)*(CE/EA)*(AF/FB)=1时,可理解为在符合在三边线段的前提下,分母分子字母一样,且分母、分子内部有相同字母.。 另外一种记忆方式是,将图中的ABC作为顶点,图中的DEF作为分点,则(BD/DC)*(CE/EA)*(AF/FB)可以看做是:顶点到分点(BD),该分点到另一顶点(DC),顶点再到分点(CE),分点再到顶点(EA),顶点再到分点(AF),分点再到顶点(FB)。一个循环。 6

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服