ImageVerifierCode 换一换
格式:DOC , 页数:4 ,大小:137.06KB ,
资源ID:8866212      下载积分:10 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/8866212.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(对KNN算法的优化.doc)为本站上传会员【pc****0】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

对KNN算法的优化.doc

1、 中国地质大学课程报告 课程名称:数据挖掘 指导老师:蒋良孝 学生学号:20131003701 学生班级:086131 学生姓名:刘卫 对KNN算法的优化 k-近邻算法概述 k-近邻(k Nearest Neighbors)算法采用测量不同特征之间的距离方法进行分类 。它的工作原理是:存在一个样本数据集合,并且样本集中每个数据都存在标签,即我们知道样本每一数据与所属分类的对应关系。输入没有标签的新数据后,将新数据的每个特征与样本集中数据对应的特征进行比较,然后算法提取样本集中特征最相似数据的分类标签。一般来说,我们只

2、选择样本数据集中前k个最相似的数据,这就是k-近邻算法中k的出处,通常k是不大于20的奇数。最后,选择k个最相似数据中出现次数最多的分类,作为新数据的分类。 k-近邻算法的优点是精度高,对异常值不敏感,无数据输入假定;缺点是计算复杂度高、空间复杂度高。适用于数值和标称型数据。 使用 k-近邻算法将每组数据划分到某个类中,其伪代码如下: 对未知类别属性的数据集中的每个点依次执行以下操作: 计算已知类别数据集中的点与当前点之间的距离; 按照距离递增交序排序; 选取与当前点距离最小的k个点; 确定前k个点所在类别的出现频率; 返回前k个点出现频率最高的类别作为当前点的预测分类。

3、 提出问题: 1.我在上机用KNN算法做实验时,发现k值只能凭经验选取, 而且不同的k值所产生的测试结果正确率相差很大。如右图 所示,当k值取3的时候待测元组就属于三角形而当k值取5的时候待测元组属于正方形,最极端的情况k取值为所有训练样本的元组数n时,那就是正方形和三角形哪个多取哪个了。 2.对于所要预测的值为离散类型数据时,是将这k个训练数据中哪个类别的训练数据占多数,待测分类元祖就属于哪个类别;对于预测值为连续型时,结果取k个训练数据的平均值。但这里明显k个点到待测元组的距离是不同的,距离近的肯定更有参考价值,而这里却把这k个点的价值等同看待,不合情理。 分析问题:

4、 不管是问题1还是问题2,都与原算法将这k个最近点等同看待了这个原因相关,若是设置一个量化关系,把离得近的训练数据点对结果的权值由1/k调高,把离得远的训练数据点对结果的权值由1/k调低,是不是能优化此算法的效果呢。 解决问题: 现在我们来根据距离的不同给这k个点来设置不同的权值(距离越大权值越小,距离越小权值越大。K个点的权值之和为1.)设此k个点与待测元组的距离分别为:d1,d2,......,dk。这k个距离的和S=d1+d2+......+dk。虽然d1/s+d2/s+......+dk/s=1,注意绝对不能直接把d1/s,d2/s,......,dk/s作为权值赋给这k个训练数

5、据,因为如果这样就表示距离越小权值越小了,与我们想要的结果相反;那既然相反,那么我把此结果求一下倒数不就可以表示距离越小权值越大了吗。这样:将d1/s,d2/s,......,dk/s求倒得s/d1,s/d2,......,s/dk。再令S’=s/d1+s/d2+,......,s/dk。此时(s/d1)/s’+(s/d2)/s’+,......,(s/dk)/s’=1,这样即可将(s/d1)/s’,(s/d2)/s’,......,(s/dk)/s分别直接赋给这k个训练数据点所占的权值q1,q2,......,qk了。 经过以上的改进便可以实现距离越小权重越大,距离越大权重越小了。那么

6、这些权值究竟如何影响结果呢?看以下阐述: 对于预测值为连续型数据时:此k个训练元组的值分别乘以他们的权重再相加即可得到待测元组的值。 对于预测值为离散型数据时:若这k个训练元组中有一个或多个元组属于某一个类,那么将这几个元组的权值相加的和作为他们所属类的权值,最后待测元祖取值为权值总和最大的类。 实验结论: 打开weka后导入天气的数据首先用IBK(knn)算法,try了一个结果最好的k=3的值得到以下结果: 然后换上经过改进后的算法得到以下结果: 经过交叉验证的结果比较后者预测准确率64.2857%优于前者57.1429%,而且后者在多次改变k值的情况下准确率也没有明显变化。 3

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服