ImageVerifierCode 换一换
格式:DOC , 页数:3 ,大小:43.50KB ,
资源ID:8853787      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
图形码:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/8853787.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请。


权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4009-655-100;投诉/维权电话:18658249818。

注意事项

本文(《点集拓扑学》第5章 §5.2 可分空间.doc)为本站上传会员【s4****5z】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

《点集拓扑学》第5章 §5.2 可分空间.doc

1、§5.2 可分空间   本节重点:   掌握可分空间的定义及可分空间与第二可数性公理空间的关系,与度量空间的关系;   掌握稠密子集的定义及性质.   定义5.2.l 设X是一个拓扑空间,DX.如果D的闭包等于整个拓扑空间X,即=X,则称D是X的一个稠密子集.   以下定理从一个侧面说明了讨论拓扑空间中的稠密子集的意义.   定理5.2.1 设X是一个拓扑空间,D是X中的一个稠密子集.又设f,g:X→Y都是连续映射.如果,则f=g(本定理说明两个映射只须在稠密子集上相等,就一定在整个空间相等)   证明 设.如果f≠g,则存在x∈X使得 f(x)≠g(x).令:ε=|f(x)-

2、g(x)|,   则ε>0.令   =(f(x)-ε/2,f(x)+ε/2)   =(g(x)-ε/2,g(x)+ε/2)   则根据映射f和g的连续性可知 都是x的邻域,从而U=也是x的一个邻域.由于子集D是稠密的,所以U∩D≠.对于任意一个y∈U∩D,我们有, f(y)=g(y)∈,矛盾.   我们也希望讨论有着较少“点数”稠密子集的拓扑空间,例如具有有限稠密点集的拓扑空间.但这类拓扑空间比较简单,大部分我们感兴趣的拓扑空间都不是这种情形,讨论起来意思不大.例如一个度量空间如果有一个有限的稠密子集的话,那么这个空间一定就是一个离散空间.相反,后继的讨论表明,许多重要的拓扑空间都

3、有可数稠密子集.   定义5.2.2 设X是一个拓扑空间.如果X中有一个可数稠密子集,则称X是一个可分空间.   定理5.2.2 每一个满足第二可数性公理的空间都是可分空间.   证明 设X是一个满足第二可数性公理的空间,B是它的一个可数基.在B中的每一个非空元素B中任意取定一个点 ∈B.令    D={|B∈B,B≠} 这是一个可数集.由于X中的每一个非空开集都能够表示为B中若干个元素(其中当然至少会有一个不是空集)之并,因此这个非空开集一定与D有非空的交,所以可数集D是X的一个稠密子集.   包含着不可数多个点的离散空间一定不是可分的.这是因为在这样一个拓扑空间中,任何一个可数

4、子集的闭包都等于它的自身而不可能等于整个空间.   可分性不是一个可遗传的性质,也就是说一个可分空间可能有子空间不是可分的.例子见后面的例5.2.1.然而由于满足第二可数性公理是一个可遗传的性质,因此根据定理5.2.2我们立即得到:   推论5.2.3 满足第二可数性公理的空间的每一个子空间都是可分空间.   特别,n维欧氏空间中的每一个子空间(包括它自己)都是可分空间.   例5.2.1 设(X,T)是一个拓扑空间,∞是任何一个不属于X的元素(例如我们可以取∞=X).令X*=X∪{∞}和T*={A∪{∞}|A∈T}∪{}.容易验证(请读者自己证明)(X*,T*)是一个拓扑空间.  

5、 我们依次给出以下三个论断:   (1)(X*,T*)是可分空间.这是因为∞属于(X*,T*)中的每一个非空开集,所以单点集{∞}是(X*,T*)中的一个稠密子集.   (2)(X*,T *)满足第二可数性公理当且仅当(X,T)满足第二可数性公理.   事实上,B是(X,T)的基当且仅当B*={B∪{∞}|B∈B}是(X*,T*)的一个基,而B与B*有相同的基数则是显然的.   (3)(X,T)是(X*,T*)的一个子空间.因为T*T.   根据这三个论断,我们可有以下两个结论:   (A)可分空间可以不满足第二可数性公理.因为如果任意选取一个不满足第二可数性公理的空间(X,T),

6、我们便能得到一个不满足第二可数性公理的可分空间(X*,T *).   (B)可分空间的子空间可以不是可分空间.因为如果选取(X,T)为一个不是可分的空间,我们便能得到一个可分空间(X*,T *)以(X,T)为它的一个子空间.   (对X加上一个点后得到的空间就是这么神奇)   定理5.2.4 每一个可分的度量空间都满足第二可数性公理.   证明(略)   根据定理5.2.4及推论5.2.3可知:   推论5.2.5 可分度量空间的每一个子空间都是可分空间.   有关可分性是拓扑不变性质,有限可积性质,可商性质以及对于开子空间可遗传性质等问题我们列在习题中,由读者自己去研究.   作业:   P144 2.4

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服