ImageVerifierCode 换一换
格式:PPTX , 页数:21 ,大小:423.44KB ,
资源ID:884538      下载积分:11 金币
验证码下载
登录下载
邮箱/手机:
图形码:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/884538.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请。


权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4009-655-100;投诉/维权电话:18658249818。

注意事项

本文(32-残差分析.pptx)为本站上传会员【可****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

32-残差分析.pptx

1、第三章第三章 统计案例统计案例回归分析的基本思想及其初步应用回归分析的基本思想及其初步应用1、求回归直线方程的步骤:、求回归直线方程的步骤:(3)代入公式)代入公式(4)写出直线方程为)写出直线方程为y=bx+a,即为所求的回归直线方程。即为所求的回归直线方程。(1)画散点图)画散点图例例1 从某大学中随机选取从某大学中随机选取8名女大学生,其身高和体重数据如表名女大学生,其身高和体重数据如表1-1所示。所示。编号12345678身高身高/cm 165 165 157 170 175 165 155 170体重体重/kg4857505464614359求根据一名女大学生的身高预报她的体重的回归

2、方程,并预报一名身高为求根据一名女大学生的身高预报她的体重的回归方程,并预报一名身高为172cm的女大学生的体重。的女大学生的体重。3 3、从散点图还看到,样本点散布在某一条直线的附近,而不是、从散点图还看到,样本点散布在某一条直线的附近,而不是在一条直线上,所以不能用一次函数在一条直线上,所以不能用一次函数y=bx+ay=bx+a描述它们关系。描述它们关系。思考思考产生随机误差项产生随机误差项e e的原因是什么?的原因是什么?我们可以用下面的我们可以用下面的线性回归模型线性回归模型来表示:来表示:y=bx+a+ey=bx+a+e,其中,其中a a和和b b为模型的未知参数,为模型的未知参数,

3、e e称为随机误差称为随机误差。思考思考产生随机误差项产生随机误差项e的原因是什么?的原因是什么?随机误差随机误差e e的来源的来源(可以推广到一般):可以推广到一般):1、其它因素的影响:影响身高 y 的因素不只是体重 x,可能 还包括遗传基因、饮食习惯、生长环境等因素;2、用线性回归模型近似真实模型所引起的误差;3、身高 y 的观测误差。5943616454505748体重/kg170155165175170157165165身高/cm87654321编号 假设随机误差对体重没有影响,也就是说,体重仅受身高的影响,那么散假设随机误差对体重没有影响,也就是说,体重仅受身高的影响,那么散点图中

4、所有的点将完全落在回归直线上。但是,在图中,数据点并没有完全落点图中所有的点将完全落在回归直线上。但是,在图中,数据点并没有完全落在回归直线上。在回归直线上。这些点散布在回归直线附近,所以一定是随机误差把这些点从这些点散布在回归直线附近,所以一定是随机误差把这些点从回归直线上回归直线上“推推”开了开了。在例在例1中,残差平方和约为中,残差平方和约为128.361。因此,数据点和它在回归直线上相应位置的差异因此,数据点和它在回归直线上相应位置的差异 是随机误差的效应,是随机误差的效应,称称 为为残差残差。例如,编号为例如,编号为6的女大学生,计算残差为:的女大学生,计算残差为:对每名女大学生计算

5、这个差异,然后分别将所得的值平方后加起来,用数学符号对每名女大学生计算这个差异,然后分别将所得的值平方后加起来,用数学符号称为称为残差平方和残差平方和,表示为:表示为:类似于方差的定义类似于方差的定义表表1-4列出了女大学生身高和体重的原始数据以及相应的残差数据。列出了女大学生身高和体重的原始数据以及相应的残差数据。在研究两个变量间的关系时,首先要根据散点图来粗略判断它们是否线在研究两个变量间的关系时,首先要根据散点图来粗略判断它们是否线性相关,是否可以用回归模型来拟合数据。性相关,是否可以用回归模型来拟合数据。残差分析与残差图的定义:残差分析与残差图的定义:然后,我们可以通过残差然后,我们可

6、以通过残差 来判断模型拟合的效果,判断原始来判断模型拟合的效果,判断原始数据中是否存在可疑数据,数据中是否存在可疑数据,这方面的分析工作称为残差分析这方面的分析工作称为残差分析。编号编号12345678身高身高/cm165165157170175165155170体重体重/kg4857505464614359残差残差-6.3732.6272.419-4.6181.1376.627-2.8830.382 我们可以利用图形来分析残差特性,作图时纵坐标为残差,横坐标可以选为我们可以利用图形来分析残差特性,作图时纵坐标为残差,横坐标可以选为样本编号,或身高数据,或体重估计值等,这样作出的图形称为样本编

7、号,或身高数据,或体重估计值等,这样作出的图形称为残差图残差图。残差图的制作及作用。残差图的制作及作用。坐标纵轴为残差变量,横轴可以有不同的选择;坐标纵轴为残差变量,横轴可以有不同的选择;若模型选择的正确,残差图中的点应该分布在以若模型选择的正确,残差图中的点应该分布在以横轴为心的带形区域横轴为心的带形区域;对于远离横轴的点,要特别注意对于远离横轴的点,要特别注意。身高与体重残差图异常点 错误数据 模型问题 几点说明:几点说明:第一个样本点和第第一个样本点和第6个样本点的残差比较大,需要确认在采集过程中是否有人为个样本点的残差比较大,需要确认在采集过程中是否有人为的错误。如果数据采集有错误,就

8、予以纠正,然后再重新利用线性回归模型拟合数的错误。如果数据采集有错误,就予以纠正,然后再重新利用线性回归模型拟合数据;如果数据采集没有错误,则需要寻找其他的原因。据;如果数据采集没有错误,则需要寻找其他的原因。另外,残差点比较均匀地落在水平的带状区域中,说明选用的模型计较合适,这另外,残差点比较均匀地落在水平的带状区域中,说明选用的模型计较合适,这样的带状区域的宽度越窄,说明模型拟合精度越高,回归方程的预报精度越高。样的带状区域的宽度越窄,说明模型拟合精度越高,回归方程的预报精度越高。我们可以用我们可以用相关指数相关指数R2来刻画回归的效果,其计算公式是来刻画回归的效果,其计算公式是 R2越接

9、近越接近1,表示回归的效果越好(因为,表示回归的效果越好(因为R2越接近越接近1,表示解析变量和预报变量的线性相关性越强)。,表示解析变量和预报变量的线性相关性越强)。如果某组数据可能采取几种不同回归方程进行回归如果某组数据可能采取几种不同回归方程进行回归分析,则可以通过比较分析,则可以通过比较R2的值来做出选择,即的值来做出选择,即选取选取R2较大的模型作为这组数据的模型较大的模型作为这组数据的模型。总的来说:总的来说:相关指数相关指数R2是度量模型是度量模型拟合效果拟合效果的一种指标。的一种指标。在线性模型中,它在线性模型中,它代表自变量刻画预报变量的能力代表自变量刻画预报变量的能力。例例

10、 关于关于x与与y有如下数据:有如下数据:有如下的两个线性模型:有如下的两个线性模型:(1);(;(2)试比较哪一个拟合效果更好。试比较哪一个拟合效果更好。x24568y3040605070第一个好第一个好一般地,建立回归模型的基本步骤为:一般地,建立回归模型的基本步骤为:(1)确定研究对象,明确哪个变量是解析变量,哪个变量是预)确定研究对象,明确哪个变量是解析变量,哪个变量是预报变量。报变量。(2)画出确定好的解析变量和预报变量的散点图,观察它们之)画出确定好的解析变量和预报变量的散点图,观察它们之间的关系(如是否存在线性关系等)。间的关系(如是否存在线性关系等)。(3)由经验确定回归方程的

11、类型(如我们观察到数据呈线性关系,)由经验确定回归方程的类型(如我们观察到数据呈线性关系,则选用线性回归方程则选用线性回归方程y=bx+a).(4)按一定规则估计回归方程中的参数(如最小二乘法)。)按一定规则估计回归方程中的参数(如最小二乘法)。(5)得出结果后分析残差图是否有异常(个别数据对应残差)得出结果后分析残差图是否有异常(个别数据对应残差过大,或残差呈现不随机的规律性,等等),过存在异常,过大,或残差呈现不随机的规律性,等等),过存在异常,则检查数据是否有误,或模型是则检查数据是否有误,或模型是 否合适等。否合适等。案例案例2 一只红铃虫的产卵数一只红铃虫的产卵数y和温度和温度x有关

12、现收有关。现收集了集了7组观测数据列于表中:组观测数据列于表中:(1 1)试试建建立立产产卵卵数数y与与温温度度x之之间间的的回回归归方方程程;并并预测温度为预测温度为2828o oC C时产卵数目。时产卵数目。(2 2)你所建立的模型中温度在多大程度上解释了)你所建立的模型中温度在多大程度上解释了产卵数的变化?产卵数的变化?温度温度xoC21232527293235产卵数产卵数y/个个711212466115325选变量选变量 解:选取气温为解析变量解:选取气温为解析变量x,产卵数,产卵数 为预报变量为预报变量y。画散点图画散点图假设线性回归方程为假设线性回归方程为:=bx+a选选 模模

13、型型分析和预测分析和预测当当x=28时,时,y=19.8728-463.73 93估计参数估计参数由计算器得:线性回归方程为由计算器得:线性回归方程为y=19.8719.87x-463.73-463.73 相关指数相关指数R2 2=r2 20.8640.8642 2=0.7464=0.7464所以,一次函数模型中温度解释了所以,一次函数模型中温度解释了74.64%的产卵数变化。的产卵数变化。探索新知探索新知050100150200250300350036912151821242730333639方案1当当x=28时,时,y=19.8728-463.73 93线性模型线性模型奇奇怪怪?9366?

14、模型不好?模型不好?y=bx2+a 变换变换 y=bt+a非线性关系非线性关系 线性关系线性关系方案2问题问题选用选用y=bx2+a,还是还是y=bx2+cx+a?问题问题3 产卵数产卵数气气温温问题问题2如何求如何求a、b?合作探究合作探究 t=x2二次函数模型二次函数模型方案2解答平方变换平方变换:令令t=x2,产卵数,产卵数y和温度和温度x之间二次函数模型之间二次函数模型y=bx2+a就就转化为产卵数转化为产卵数y和温度的平方和温度的平方t之间线性回归模型之间线性回归模型y=bt+a温度温度21232527293235温度的平方温度的平方t44152962572984110241225产

15、卵数产卵数y/个个711212466115325作作散散点点图图,并并由由计计算算器器得得:y y和和t t之之间间的的线线性性回回归归方方程程为为y=y=0.3670.367t t-202.54-202.54,相关指数,相关指数R R2 2=r r2 20.8960.8962 2=0.802=0.802将将t=xt=x2 2代入线性回归方程得:代入线性回归方程得:y=y=0.3670.367x x2 2-202.54-202.54当当x x=28=28时时,y y=0.36728=0.367282 2-202.5485202.5485,且,且R R2 2=0.802=0.802,所以,二次函

16、数模型中温度解所以,二次函数模型中温度解释了释了80.2%80.2%的产卵数变化。的产卵数变化。t问题问题 变换变换 y=bx+a非线性关系非线性关系 线性关系线性关系问题问题如何选取指数函数的底如何选取指数函数的底?产卵数产卵数气气温温指数函数模型指数函数模型方案3合作探究合作探究对数对数方案3解答温度温度xoC21232527293235z=lgy0.851.041.321.381.822.062.51产卵数产卵数y/个个711212466115325xz当当x=28x=28o oC C 时,时,y 44 y 44,指数回归,指数回归模型中温度解释了模型中温度解释了98.5%98.5%的产

17、卵数的的产卵数的变化变化由计算器得:由计算器得:z z关于关于x x的线性回归方程的线性回归方程为为z=0.118z=0.118x x-1.665-1.665,相关指数相关指数R R2 2=r r2 20.99250.99252 2=0.985=0.985 对数变换:在对数变换:在 中两边取常用对数得中两边取常用对数得令令 ,则,则 就转换为就转换为z z=bx+a=bx+a最好的模型是哪个最好的模型是哪个?产卵数产卵数气气温温产卵数产卵数气气温温线性模型线性模型二次函数模型二次函数模型指数函数模型指数函数模型比比一一比比函数模型函数模型相关指数相关指数R2线性回归模型线性回归模型0.7464

18、二次函数模型二次函数模型0.802指数函数模型指数函数模型0.985最好的模型是哪个最好的模型是哪个?总总 结结 对于给定的样本点对于给定的样本点两个含有未知参数的模型:两个含有未知参数的模型:其中其中a和和b都是未知参数。拟合效果比较的步骤为:都是未知参数。拟合效果比较的步骤为:(1)分别建立对应于两个模型的回归方程)分别建立对应于两个模型的回归方程与与 其中其中 和和 分别是参数分别是参数a和和b的估计值;的估计值;(2)分别计算两个回归方程的相关指数)分别计算两个回归方程的相关指数 与与(3)若)若 则则 的效果比较好;的效果比较好;反之,反之,的效果比较好。的效果比较好。作业:作业:导航导航P63 Ex 14 P66 Ex14

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服