ImageVerifierCode 换一换
格式:DOC , 页数:35 ,大小:871KB ,
资源ID:8821729      下载积分:10 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/8821729.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(第七章多元函数微积分.doc)为本站上传会员【s4****5z】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

第七章多元函数微积分.doc

1、第七章 多元函数微积分 学习目的和要求 学习本章,要求读者掌握多元函数及其偏导数的概念、偏导数的求导法则及利用偏导数讨论多元函数的极值、最大值和最小值,学会使用拉格朗日乘数法研究条件极值并应用最小二乘法等讨论经济问题,了解二重积分的数学含义,学会计算一些简单的二重积分. 第一节 多元函数 1.二元函数 设有3个变量 如果当变量 在一定的范围D内任意取定一对值时,变量z按照一定的规律,总有确定的数值和它们对应,则变量z叫做变量 的二元函数.记作 或称为自变量,D称为定义域,z为因变量. 类似地,可以定义三元函数及更多元函数,二元以及二元以上的函数称为

2、多元函数. 2.二元函数的极限 设函数 的某一邻域内有定义, 是该邻域内异于 的任意一点.如果点 以任何方式趋近于 时,函数的对应值 趋近于一个确定的常数A,我们就说 时的二重极限,记作 或 3.二重极限和二次极限 对于二元函数 的极限,可得极限函数 ,这个极限称为二次极限,记为 . 4.有界闭区域上多元连续函数的性质(不作证明) 有最大最小值定理、中间值定理、有界性定理、零点存在定理. 第二节 偏 导 数 1.定义 设函数 的某一邻域内有定义.当 固定在 时,相应地函数有增量

3、 如果极限 存在,则称此极限值为函数 在点 的偏导数,记作 类似地,可定义函数 的偏导数。 2.求导法则 (1)和:设 (2)积:设 则 (3)商:设 3.高阶偏导数 高阶偏导数可定义为相应的低一阶偏导数的偏导数 例如: 第三节 全 微 分 二元函数全微分的定义 若二元函数 的全增量 可表示为 其中 的高阶无穷小量,则称函数 可微,并称 在点(x,y)的全微分. 进一步讨论可知:

4、 故得 关于二元函数,有如下结论:若 及其某一邻域内存在,且在该点连续,则函数在该点可微. 第四节 多元复合函数求导法则、隐函数求导公式 1.    设函数 的函数, .若成立条件: (1)在点 处存在编导数 (2) 的相应点可微,则有 2.隐函数求导公式 设函数 的某一邻域内具有连续的偏导数, 的某一邻域内恒能唯一确定一个单值连续且具有连续偏导数的函数 它满足条件 ,偏导数可由 即 来确定. 第五节 多元函数

5、偏导数的应用 1.多元函数的极值 设函数 的某个邻域内有定义,对于该邻域内异于 如果都有 ,则称函数在点( )有极大值 反之,若成立 ,则称函数在点 有极小值 .使函数取得极值的点称为极值点. (1)极值存在的必要条件 设函数 可微分(或存在偏导数 )处有极值,则在该点的偏导数必为零,即 (2)极值存在的充分条件 设函数 的某个邻域内连续且有一阶二阶连续偏导数,又 记 则 ① 处取极值,且当AO时取极小值; ② 时无极值; ⑧ 时待定. 2.条件极值、拉格朗日乘数法 在讨论极值问

6、题中,除对自变量给出定义域外,并无其他条件,则称为无条件极值,而若对自变量还附有其他条件的极值问题称为条件极值. 拉格朗日乘数法:要找函数 下的极值可疑点,可以先构造函数 其中λ为某一常数,求 的一阶偏导数,并使之为零,然后与方程 联立起来: 由上述方程组解出 即为极值可疑点. 3.最小二乘法 在经济分析中,我们经常要研究一些经济变量间的相互关系,其中最简单最常见的则为线性关系 我们希望利用一组已有的资料 来寻找这一线性关系,使找到的 能很好地吻合已有数据.记 称为计算误差或残

7、差. 我们希望找到这样的 取到最小值,这种根据残差的平方和为最小的条件来选择常数 的方法叫做最小二乘法. 由极值存在的必要条件,使 必须满足 从而可解得 若记 则又可得下面比较简单的表达式: 4.应用举例 (1)生产函数 考察一个企业的生产能力常常涉及各种因素,但就其根本来说,决定企业内部生产能力的主要因素是劳动力 ,因而可记生产函数为 .     在经济分析中,有所谓要素报酬递减定律,也就是边际收益会递减.例如我们假定资金保持不变,则随着劳动力的增加,产量也将

8、随着增加,但劳动力的边际产量将会下降,如图7.1所示. 如果资金和劳动力是可以相互替代的,则为得一不变产量水平可以有各种不同的劳动力和资金投入,而且若拥有资金越来越少,此时劳动力就要大量增加.同样,如果只有极少的劳动力,此时若再减少一些劳动力,则资金增量就要大得多,这样我们就可得到一族等量线K=K(L),且等量线为单调下降的下凸曲线(两阶导数大于零),如图7.2所示 在等量线上,Q为常数,所以 故得 定义为技术替代率,或要素的边际替代率. (2)Cobb—Douglas生产函数

9、 20世纪30年代,西方经济学界提出如下形式: 的生产函数,称为Cobb—Douglas生产函数,这类函数有如下一些优点,因而得到较广泛的应用: ①    它是 次齐次函数; ②    等量线为单调下降和下凸的; ③    常弹性,资金弹性为α,劳力弹性为β; ④    系数A表示技术进步。 (3)齐次函数和欧拉定理 若 次齐次函数,则 特别地,当 时,有 它表示:资本投入量乘以边际产量加上劳力投入量乘以劳动力边际产量等于总产量。 第六节 二重积分 2.二重积分的概念 设函数 在闭区域

10、D上连续,将区域D任意分成 n个小区域 在每个小区域 ,作乘积 (i=1,2,…,n) ,并作和 如果各小区域的直径中的最大值λ趋于零时,这和式的极限存在,则称此极限值为函数 ,即 , 其中 叫做被积函数, 为积分区域. 2.二重积分的性质 (1) . (2) (3) 这里假定将区域 D分成两个区域 D1与 D2. (4)若在 D上,成立 ,则有不等式: 特别地有: (5)设 上的最大值和最小值, 的面积,则有

11、 (6)设函数 在闭区域 上连续, 的面积,则在 上至少存在一点 ,成立 3.二重积分的计算 (1)化二重积分为二次积分 (a)先对y后对x积分 (b)先对x后对y积分 (2)利用极坐标计算二重积分 令 则 若 第七章 多元函数微积分 例1.下列平面方程中,过点(1,1,-1)的方程是( ) (A) x+y+Z=0 (B)x+y+Z=1 (C)x+y-Z=1 (D)x+y-Z=0 解:判断一个点是否在平面上,只需将点的坐标代入,看看是否满足

12、相应的平面方程即可。易见应选(B)。 例2.指出下列平面的特殊位置 (1)x+2z=1; (2)x-2y=0; (3)x-2y+3z=0; (4)z-5=0. 解:设平面方程为  Ax+By+Cz+D=0 (1)方程中y的系数为B=0,故该平面平行于oy轴(垂直于zox平面); (2)方程中z的系数C=0且D=0,故平面过oz轴; (3)方程中常数D=0,故该平面过原点; (4)方程中x的系数A=0 且y的系数B=0,故该平面垂直于oz轴(平行于xoy平面)。 例3.求过点(3,2,1)且平行于yoz平面的平面方程。 解:平行于yoz平面即垂直于ox轴,故可设所求

13、平面方程为Ax+D=0,将已知点(3,2,1)的坐标代入上式,得D=-3A,从而所求方程为x-3=0。 注意:在求平面方程时,Ax+By+Cz+D=0中的四个待定常数不是完全独立的,计算时可用其中的一个表示其余的三个,然后通过化简得出所求结果。 例4.求点M(2,-3,1)分别关于xOy平面、Oy轴和原点的对称点。 解:点M关于xOy平面的对称点是第三个分量变号,即(2,-3,-1),关于Oy轴的对称点是第一,第三分量变号,即(-2,-3,-1),关于原点的对称点是三个分量都变号即(-2,3,-1)。 例5.求平面3x+2y-z-6=0分别在三条坐标轴上的截距。 解:将平面方程化为截

14、距式方程,得   因此该平面在Ox轴、Oy轴和Oz轴上的截距依次为2、3、和-6。 例6.求球面 的球心坐标和半径。 解:对方程进行配方,化为一般形式的球面方程       从而球心坐标为(3,-1,0),半径为 。 例7.下列方程在空间直角坐标系中,表示施转抛物面的方程是( ) (A) (B) (C) (D) 解: 只能x=y=z=0,它表示空间直角坐标系中的原点。 是一次方程,D=0表示过原点的一个平面。 即 表示绕z轴旋转张口朝z轴负方向的旋转抛物面。 表示双曲抛物面(马鞍面)故应选(C) 例8.函数 的定义域是( )。 (A) (B

15、 (C) (D) 解:由函数的表达式知函数的定义域为 即 ,故应选(C)。 例9.设 (A) (B) (C) (D) 解:由题设,故应选(A)。 例10.设 在点 处偏导数存在,则 (A) (B) (C) (D) 解:根据偏导数的定义,有 故应选(C)。 例11.设 证明 证明:   于是 左 注意,本例还可以利用二元函数隐函数来解偏导数:   两边取对数 代入左端即可得结论。 例12.设 其中f为可微函数,则

16、A) (B) (C) (D) 故应选(D)。 例13.设 因此, 例14.设 例15.设z=z(x,y)是由方程 确定的函数,求 注意:在求隐函数的偏导数时,其结果中可以有变量度z的出现,结果表达式也常常不是惟一的,如本例用 代入两个偏导还可以表示成   例16.设 (A) (B) (C) (D) 解1:变量之间的关系图为 故应选(A) 注意:这里解法2经过代入后变成了一个一元函数求导问题,简洁明了。 例17.      证明:设 变量之间的关系为 例18

17、.求函数 的极值。 解:函数 的定义域为 全平面 , 得驻点 例19.某厂生产甲、乙两种产品,其销售单位分别为10万元和9万元,若生产x件甲种产品和y件乙种产品的总成本 ,又已知两种产品的总产量为100件,求企业获得最大利润时两种产品的产量各为多少? 例20.计算二重积分 解:作积分区域D的草图,如图7-1 (图7-1) 例21. 求 解:作积分区域D的草图,如图7-2 (图7-2) 例22. 计算二重积分 解: 积分区域D是一个圆环:内半径为 用极坐标系计算。 注意:当积分区域是圆及其部分,被积函数又比较容易化成极坐标

18、时,应考虑使用在极坐标系之下积分。 本例关于 和关于r的积分上下限均是常数,同时被积函数可以分离,这时二重积分可化成两个定积分的乘积。 例23. 计算 其中 解法1: 即圆心在(0,a)半径为a的圆。又 ,因此是右半半圆(如图7-3)。 (图7-3) 用极坐标系计算。 解法2:用直角坐标系计算,先对x后对y积分右半圆的方程为 第七章 多元函数微积分 单元测试 一、选择题 1、 点 ,则 的中点坐标为( ) A、(0,2,-2) B、(1,-2,1) C、(0,4,-4) D、(2,4,2) 2、点 关于坐标原点的对称点是

19、 () A、(-2,3,-1) B、(-2,-3,-1) C、(2,-3,-1) D、(-2,3,1) 3、点 关于XOY平面的对称点是 ( ) A、(-2,3,-1) B、(-2,-3,-1) C、(2,-3,-1) D、(-2,3,1) 4、过Y轴上的点(0,1,0)且平行与XOZ平面的平面方程是( ) 5、下列方程中,其图形是下半球的是 () 6、设 ,则 ( ) 7、函数 的定义域是() 8、设 在(0,0)点连续,则 K= () A、1 B、0 C、1/2 D、不存在 9、设 ( ) 1

20、0、若 () 11、设 则 =() A、0 B、1/2 C、-1 D、1 12、设 ,则 =() 13、设 ,则 () 14、若 ,则 () A、10 B、-10 C、15 D、-15 15、设 则 () 16、若 ,则 () 17、设 ( ) 18、若 () 19、设 () 20、设函数 () 21、设 () 22、函数 z=f(x,y) 在点 处具有两个偏导数 是函数在该点存在全微分的( ) A、充分条件 B、充要条件 C、必要条件 D、既不是充分条件,又不是必要条件

21、23、若函数 ,则 () 24、设 是由方程 确定的隐函数,则 =() 25、若 则 =() 26、二元函数 的驻点为() 27、若 ,则 在 处 () A 、一定连续 B 、一定偏导数存在 C、一定可微 D、一定有极值 28、设二元函数 有极大值且两个一阶偏导数都存在,则必有() 29、设函数 在点 的某一邻域内有连续的二阶偏导数,且 是它的驻点, 则 是极大值的充分条件是() A、 B、 C 、 D、 30、设 是函数 的驻点且有 若 ,则 一定() A、是极大值 B、是极小值 C、不是极值 D

22、是极值 31、函数 在点(0,0)处() A、有极大值 B、有极小值 C、无极值 D 、不是驻点 32、对于函数 ,原点(0,0)() A、不是驻点 B、是驻点但非极值点 C、是驻点且为极大值点 D、是驻点且为极小值点 33、若D是由 所围成的平面区域,则 () 34、若D是平面区域 ,则二重积分 () 35、设D: ,则 () 36、设二重积分的积分区域D是 ,则 () 37、若D是平面区域 ,y≥0则 ( ) 二、计算题(一) 1、设 。 解:设 则 2、设 解:

23、 3、计算二重积分 ,其中区域D是由 所围成的第一象限的图形。 解:区域D在极坐标下可表示为 于是 = 三、计算题(二) 1、 设 解: 2、已知 解: 3、设 。 解法一:在 两边分别对 和 求偏导数,得 整理得 解法二: 4、设 确定函数 ,求 解:令 ∴ 5、设函数 ,由方程 确定,其中 解: 同理 6、设D是由 所围成的区域,计算 解:先对x积分,再对y积分。 7、计算

24、二重积分 ,其中区域由抛物线 及直线 所围成. 解: 8、计算二重积分 ,其中D为 解:采用极坐标系 9、 计算二重积分 ,其中D是由直线 和圆 所围成且在直线 下方的平面区域。 解法一:用极坐标系 解法二:用直角坐标系 = = = 10、计算二重积分 圆 围成的区域。 解:圆 的极坐标方程是 因此 四、证明题 1、设 (a,b 均为常数) 求证:   证:∵ ∴ 2、设 ∵ ∴ ∴ 3、设 证:∵ ∴ 即 4、设 ,证明它满足等式: 证: 故 35

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服