ImageVerifierCode 换一换
格式:DOC , 页数:7 ,大小:134.05KB ,
资源ID:8819896      下载积分:10 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/8819896.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(代数章节翻译.doc)为本站上传会员【s4****5z】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

代数章节翻译.doc

1、 2 Integers and rational numbers 2.1 The integers The integers are familiar to us from elementary arithmetic, but here we shall want to express that familiarity in precise terms. We do this by writing down a list of properties which the integers posses and on which we shall base all our deduct

2、ions. Later, in Vol.2, we shall see that all the properties listed here can actually be deduced from quite a brief list of axioms, but this is immaterial at present. We denote the set of positive integers (also called natural numbers) 1,2,3...by N and write Z for the set of all integers, positive,

3、 negative, and zero. Here N stands for number and Z for Zahl, the German for number; both abbreviations are generally used in mathematics (see Appendix 2 ). The set z admits three operations: addition, x+y, subtraction, x-y,and multiplication, x.y, or xy.Often it is convenient to express subtracti

4、on by adding the negative:x-y=x+(-y). These operations are connected by the following laws. Z.1 Associative law: (x+y)+z=x+(y+z), (xy)z=x(yz). Z.2 Commutative law: x+y=y+x, xy=yx. Z.3 Existence of neutral element:x+0=x, x1=x. Z.4 Existence of (additive) inverse: x+(-x)=0.

5、The number 0 is said to be neutral for addition because adding it to any number x leaves x unchanged; likewise 1 is neutral for multiplication. Every number x has the additive inverse -x (which undoes the effort of adding x), but apart from 1 and -1, no integer has a multiplicative inverse. However

6、we shall find such inverse once we come to consider rational numbers in 2.4. In addition to the above laws, there is a further law, relating addition and multiplication: Z.5 Distributive law: x(y+z)=xy+xz. A set R with two operations x+y,xy and a negative -x, satisfying Z.1-5 is called a ring;mo

7、re precisely it is commutative ring (because the multiplication is commutative,cf.Ex.(1) ,6.1). Thus the set Z of all integers is a commutative ring.However, these laws are not yet sufficient to determine Z; in Ch.6 we shall give a general definition of a ring and we shall find that there are many d

8、ifferent types. We now look at some consequence of the above laws. It follows from the distributive law that x0=0 for all x. By the associative law, the sum of any number of terms is independent of the way in which brackets are placed, and by the commutative law the order of the terms is immateria

9、l. A similar remark applies to multiplication; for the present we shall accept this without proof and return to this point in Ch.3 to give a general proof. Thus the sum of numbers a1,...,an may be written a1+...+an. Often one abbreviates this expression by writing down the general term an with a ca

10、pital sigma, S,to show that the sum is to be taken, with some indiction of the range over which the terms are to be summed (unless this is clear from the context). So instead of a1+...+an we may write or or or simply , where in each case v is a dummy variable(cf. 1.1). When n=0

11、 the sum written here is empty and ,by convention, this is taken to be 0. This notation is not only briefer; it can also help to make our formula more perspicuous as well as more accurate. For instance,in the expression 1+2+...+n, the reader is expected to guess that he is dealing with an arithme

12、tic progression; the expression removes all doubt. Thus the formula for the sum of the first n natural numbers may be written =½n(n+1). We observe that for n=0 the right-hand side reduces to 0, so with our convention about empty sums,this formula still holds for n=0. For another example consid

13、er the distributive law. This has a generalized version which reads (cf. Ex.(2)) (a1+...+ar)(b1+...+bs)=a1b1+a1b2+...+arbs, or in abbreviated from Sau .Sbv=Su,vaubv. Here we have not indicated the precise range of summation u,v. A similar abbreviation exists for repeated products, using capital p

14、i,P, in place of S..Thus instead of a1a2...an we write or or or simply . Integers and rational numbers For example, the factorial function may be defined as n!=. An empty product is taken to be 1; thus empty sums and products are neutral for addition and multiplication respectively. It is an

15、 important property of the integers that the product of two non-zero integers is never zero: Z.6 For any integers a, b, if a≠0 and b≠0,then a*b≠0; morever 1≠0. This has the following useful consequence: Cancellation law For a, b, c∈Z, if ca=cb and c≠0,then a=b. This asserts that multiplicatio

16、n by a non-zero integer is an injective mapping of Z into itself. To prove it, suppose that a≠b, then a-b≠0 and hence(by Z.6) c(a-b)≠0,therefore ca-cb=c(a-b)≠0. Besides the operations on Z We have an order relation, i.e. an ordering on Z: x≤y or y≥x. If x≤y but x≠y, We write x<y or also y>x. This r

17、elation satisfies the requirements for a total ordering (see 1.5) and is related to the operations of Z by the following rules: Z.7 If x1≤x2 and y1≤y2, then x1+y1≤x2+y2. Z.8 If x≤y and z>0, then zx≤zy. The presence of these rules means that Z is a totally ordered ring. Using the ordering we can d

18、escribe the set N of positive integers as N={x∈Z∣x>0}. Later we shall see how to reconstruct Z from N; for the moment we note that, for every x∈Z, either x=0 or x∈N or –x∈N and that these three possibilities are mutually exclusive. In fact, this is true in any totally ordered ring, taking N to be

19、 defined by (1). For we know that just one of the following holds (because we have a total order): x=0 or x>0 or x<0. Now x+ (-x) =0, hence, if x<0, then 0<-x by Z.7. Thus either x=0 or x>0 or –x>0, as asserted. In order to fix Z completely, we use the following condition on the set N of positive i

20、ntegers: I (principle of induction): Let S be a subset of N such that 1∈S and n+1∈S whenever n∈S. Then S=N. This principle forms the basis of the familiar method of proof by induction. Let P(n) be an assertion about a positive integer n, e.g. ,P(n) might be'the sum of the first n positive integers

21、 is n(n+1)/2 ’.Suppose we wish to prove P(n) for all n, i.e. ("n)P(n). Then by I it will be enough to prove (ⅰ) P(1) and (ⅱ)("n)(P(n)=>P(n+1)). For this means that the set S of all n for which P(n) holds contains 1 and contains n+1 whenever it contains n. 2.1 The integer

22、s Hence by I,S=N, i.e. P(n) holds for all nÎN. There are two alternative forms of I that are often useful. I' Let S be a subset of N such that 1ÎS and nÎS whenever mÎS for all m

23、ove I,I' and I" equivalent we shall establish the implications I=>I'=>I"=>I, I=>I'. Let S be such that 1ÎS and nÎS whenever mÎS for all m

24、ave 1ÎT and, if nÎT,then yÎS for all y≤n,hence n+1ÎS and so yÎS for all y≤n+1; but this means that n+1ÎT. Applying I, we see that T=N. I'=>I". Let S be a set of positive integers without a least element;we shall show that S is empty. Denoting the complement of S by S', we must show that S'=N.Now, s

25、ince S has no element,1ÏS,so 1ÎS', moreover,if mÎS' for all mI. 1 is the least element of N(for if the least element r satisfied r<1,then r2

26、 and n+1ÎS whenever nÎS,then the complement S' of S in N has no least element.For 1ÏS' and if nÎS',then n-1ÎS',hence, by I",S'=Æ and so S=N as we wished to show. We end this section with a practical remark on proofs induction.Generally a theorem is easier to prove,the stronger the hypothesis and th

27、e weaker conclusion.But in an induction proof the conclusion at the nth step becomes the hypothesis at the (n+1)th step and the theorem may actually become easier to prove if the conclusion is strengthened; for an instance of this see Lemma 4,4.3.We also remark that an induction frequently starts a

28、t 0(instead of 1); clearly this does not affect the validity. 2 整数和有理数 2.1 整数 我们较为熟悉整数的基本算法,但现在要用明确的术语来表示其精确性。通过写下一些整数所拥有的性质及由这些性质所得出的推导来实现以上操作。随后,在卷2中可看出列出来的所有性质事实上都可以由一些极简单的原理推导得来,但这在目前不重要。 我们用N表示正整数(也叫自然数)集合。用Z表示所有整数集合,包括正的,负的和零。此处N代表数且Z也代表数,德语中的数。二

29、者的缩写通常用在数学中(见附录2)。集合Z允许三种运算:加法,x+ y,减法,x-y,和乘法,x.y或xy。通常用加上一个数的负数来表示减法是比较简便的:x-y=x+(-y) 这些运算遵循以下规律: Z.1 结合律:(x + y)+z=x+(y +z ), (xy)z=x(yz)。 Z.2 交换律: x+y=y+x, xy=yx。 Z.3存在中性元素:x+0=x, x1=x。 Z.4存在加法逆: x+(-x)=0。 对于加法来说0是中性的,因为0加上任意x后x不改变。同样在乘法中1也是中性的。每个数x都有一个加法逆-x(加x的

30、反效果)但除了1 和-1,其他整数都没有乘法逆。然而在2.4中我们考虑有理数时则会有这样的逆。 除了以上规律,还有一条关于加法和乘法的更进一步的规律: Z.5 分配率:x(y+z)=xy+xz。 满足Z.1-5且带有两种运算x+y,xy,和一个负数 -x的集合R叫做环。更巧,它是一个交换环(因为乘法是可交换的,如之前(1),6.1)。这样含所有整数的集合Z是一个交换环。但是,这些规律对于测定Z来说还是不够的。第六章将给出环的常规定义以及许多不同类型。 现在来研究以上规律的一些推论。对所有x遵循分配律x0=0。由结合律的各项数相加所得的和与括弧所在的位置无关,由交换律得各项的顺序是无关紧

31、要的。类似的结论应用于乘法中。现在没有这样结论的证明,在第3章中会给出针对这点的一般证明。 a1,¼an的和可写作a1+¼+an。通常这个表达式可由一般项an和一个用来表示要进行求和运算的大写字母西格玛缩写,以及所需求和项的范围(除了上下文很明显的)。因此a1+¼+an可写作或或 或简单写作,其中每种情况下n是一个哑变量(如1.1)。当n=0时和为空,约定俗成,计算结果为0。这种表述不仅更为简洁,还使公式更容易理解更精确。例如,表达式1+2+......+n,其实是要处理一个算术级数。表达式 消除所有疑虑。如此,这个公式是对前n个自然数求和,写作=½

32、n(n+1)。观察得,当n=0时等式右边推出0,由空的和的协定得:当n=0时该公式任然成立。 对于另外一个例子可利用分配律。这样得出广义版本,写作(如之前(2))(a1+.....ar)(b1+.....bs)=a1b1+a1b2+......arbs,或缩写为 Sau .Sbv=Su,vaubv。此时没有必要显示总和的精确范围,仅出现总和的上下指标。 累乘有相似的缩写形式,将S用大写的Pi,即P来替代,这样,论及a1a2.....an计算,可写为 或或或简单写作。 整数和有理数 例如,阶乘函数可以定义为n!= 。空的乘积运算为1,从而对于空分别在加法和乘法中的和和乘积的运算是

33、无确定性质的。 “两个非零整数的乘积不为零”是整数的一个重要性质: Z.6 对于任意整数a、b,如果a≠0,b≠0,那么ab≠0;此外1≠0。这样得出以下有用的结论: 消除法:对于a、b、c∈Z,若ca=cb且c≠0,则a=b。这表明非零整数的乘法是这个整数本身的一个单射。证明:假设a≠b,则a-b≠0且因为c(a-b)≠0(由Z.6得),所以ca-cb≠c(a-b)≠0。 对整数除了这些操作还有一种序关系,也就是对整数进行一个排序:x≤y或y≥x。若x≤y但x≠y,可得x<y或y>x。这种关系满足总体排序要求(参考1.5)并且与整数遵循以下原则的操作有关: Z.7如果x1≤x2且y

34、1≤y2,那么x1+y1≤x2+y2。 Z.8如果x≤y且z>0,那么zx≤zy。 这些规则的存在意味着整数是一个完全有序环。利用这种序可将正整数集合N表述为N={x∈Z︳x>0}。 随即可明白怎样由N推想Z,暂时记作:对于任意x∈Z,-x=0或x∈N或-x∈N这三种可能是相互排斥的。事实上,依据(1)定义N在任意一个完全有序环中都为真。对于以下结论中只有一个成立(因为存在全序):x=0或x>0或x<0。已知x+(-x)=0,因此,若x<0,则由Z.7得0<-x。所以x=0或x>0或-x>0,同样皆可得到。 为了完全确定Z,可以对正整数集合N使用以下条件: I(归纳法则):设S为集合

35、N的一个字集,这样有1∈S且n+1∈S,n∈S恒成立。那么S=N。 这项基本原则可通过类似归纳法来证明。令P(n)是由n推断而来,举例说明:P(n)可以是‘前n个正整数之和为n(n+1)/2’。假使要证明对所有n的P(n),例如:("n)P(n)。那么通过I将足以证明(ⅰ)P(1)和(ⅱ) ("n){P(n)=>P(n+1)}。这意味着对所有n构成的集合S,当P(n)包含1和n+1成立时,P(n)包含n同样成立。 2.1 整数 因为通过I,S=N,举例来说,对于所有nÎN,P(n)成立。 I有两个可供选择的形式通常很

36、有用。 I'令S是N的一个子集,这样1ÎS且nÎS,当mI'=>I''=>I。 I=>I'。令S满足1ÎS且nÎS,则当mI''。令S为一个无最小元素的正整数集

37、合,可看出S为空。用S'表示S的补集,我们必须证明S'=N。已知S没有最小元素,1ÏS,此外,当mI。1是N中的最小元素,(因为如果最小元素满足r<1,那么r2

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2026 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服