ImageVerifierCode 换一换
格式:DOC , 页数:11 ,大小:256KB ,
资源ID:8792650      下载积分:10 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/8792650.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(高中数学任意角的三角函数经典例题1.doc)为本站上传会员【s4****5z】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

高中数学任意角的三角函数经典例题1.doc

1、例1  下列说法中,正确的是 [    ] A.第一象限的角是锐角 B.锐角是第一象限的角 C.小于90°的角是锐角 D.0°到90°的角是第一象限的角 【分析】本题涉及了几个基本概念,即“第一象限的角”、“锐角”、“小于90°的角”和“0°到90°的角”.在角的概念推广以后,这些概念容易混淆.因此,弄清楚这些概念及它们之间的区别,是正确解答本题的关键. 【解】第一象限的角可表示为{θ|k·360°<θ<90°+k·360°,k∈Z},锐角可表示为{θ|0°<θ<90°},小于90°的角为{θ|θ<90°},0°到90°的角为{θ|0°≤θ<90°}.因此,锐角的集合是第一象限角

2、的集合当k=0时的子集,故(A),(C),(D)均不正确,应选(B). (90°-α)分别是第几象限角? 【分析】  由sinα·cosα<0,所以α在二、四象限;由sinα·tanα<0,所以α在二、三象限.因此α为第二象限的角,然后由角α的 【解】(1)由题设可知α是第二象限的角,即 90°+k·360°<α<180°+k·360°(k∈Z), 的角. (2)因为  180°+2k·360°<2α<360°+2k·360°(k∈Z),所以2α是第三、第四象限角或终边在y轴非正半轴上的角. (3)解法一:因为 90°+k·360°<α<180°+k·360°

3、k∈Z), 所以  -180°-k·360°<-α<-90°-k·360°(k∈Z). 故  -90°-k·360°<90°-α<-k·360°(k∈Z). 因此90°-α是第四象限的角. 解法二:因为角α的终边在第二象限,所以-α的终边在第三象限. 将-α的终边按逆时针旋转90°,可知90°-α的终边在第四象限内. 【说明】①在确定形如α+k·180°角的象限时,一般要分k为偶数或奇数讨论;②确定象限时,α+kπ与α-kπ是等效的. 例3  已知集合E={θ|cosθ<sinθ,0≤θ≤2π},F={θ|tanθ<sinθ},那么E∩F是区间 [    ] 【分析】 

4、 解答本题必须熟练掌握各个象限三角函数的符号、各个象限的三角函数值随角的变化而递增或递减的变化情况.可由三角函数的性质判断,也可由三角函数线判断.用代入特殊值排除错误答案的方法解答本题也比较容易. 【解法一】  由正、余弦函数的性质, 【解法二】由单位圆中的正弦线和正切线容易看出,对于二、四象限的角,AT<MP,即tanα<sinθ,由正弦线和余弦线可看出,当 应选(A). 可排除(C),(D),得(A). 【说明】本题解法很多,用三角函数线还可以有以下解法:因为第一、三象限均有AT>MP,即tanθ>sinθ,所以(B),(C),(D)均不成立.用排除法也有

5、些别的方法,可自己练习. 例 4 (1)已知角α终边上一点P(3k,-4k)(k<0),求sinα,cosα,tanα的值; 【分析】利用三角函数的定义进行三角式的求值、化简和证明,是 三两个象限,因此必须分两种情况讨论. 【解】(1)因为x=3k,y=-4k, 例5  一个扇形的周长为l,求扇形的半径、圆心角各取何值时,此扇形的面积最大. 【分析】解答本题,需灵活运用弧度制下的求弧长和求面积公式.本题是求扇形面积的最大值,因此应想法写出面积S以半径r为自变量的函数表达式,再用配方法求出半径r和已知周长l的关系. 【解】设扇形面积为S,半径为r

6、圆心角为α,则扇形弧长为l-2r.所以 【说明】在学习弧度制以后,用弧度制表示的求弧长与扇形面积公 形的问题中,中心角用弧度表示较方便.本例实际上推导出一个重要公式,即当扇形周长为定值时,怎样选取中心角可使面积得到最大值.本题也可将面积表示为α的函数式,用判别式来解. 【分析】第(1)小题因α在第二象限,因此只有一组解;第(2)小题给了正弦函数值,但没有确定角α的象限,因此有两组解;第(3)小题角α可能在四个象限或是轴线角,因此需分两种情况讨论. 【解】 (3)因为sinα=m(|m|<1),所以α可能在四个象限或α的终边在x轴上.

7、 例7(1)已知 tanα=m,求sinα的值; 【分析】(1)已知tanα的值求sinα或cosα,一般可将tanα 母都是sinα和cosα的同次式,再转化为关于tanα的式子求值,转化的方法是将分子、分母同除以cosα(或cos2α,这里cosα≠0),即可根据已知条件求值. 【说明】  由tanα的值求sinα和cosα的值,有一些书上利用公 很容易推出,所以不用专门推导和记忆这些公式,这类问题由现有的关系式和方法均可解决. 函数的定义来证明. 由左边=右边,所以原式成立. 【证法三】(根据三

8、角函数定义) 设P(x,y)是角α终边上的任意一点,则 左边=左边,故等式成立. 例9  化简或求值: 【分析】  解本题的关键是熟练地应用正、余弦的诱导公式和记住特殊角的三角函数值. =-sinα-cosα(因为α为第三象限角). 例10  (1)若 f(cos x)=cos9x,求f(sin x)的表达式; 【分析】在(1)中理解函数符号的含义,并将f(sin x)化成f(cos(90°-x))是充分利用已知条件和诱导公式的关键.在(2)中必须正确掌握分段函数求值的方法. 【解】(1)f(sin x)=f(cos(90°-x))=cos9(90°-x) =cos(2×360°+90°-9x)=cos(90°-9x) =sin9x; =1.

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服