ImageVerifierCode 换一换
格式:DOCX , 页数:13 ,大小:163.92KB ,
资源ID:8784342      下载积分:10 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/8784342.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(人脸识别课程设计报告.docx)为本站上传会员【仙人****88】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

人脸识别课程设计报告.docx

1、 用Matlab实现人脸识别 学院:信息工程学院 班级:计科软件普131 成员: 一、问题描述 在一个人脸库中,有 15 个人,每人有 11 幅图像。要求选定每一个人的若干幅图像组成样本库,由样本库得到特征库。再任取图像库的一张图片,识别它的身份。 对于一幅图像可以看作一个由像素值组成的矩阵,也可以扩展开,看成一个矢量。如一幅N*N象素的图像可以视为长度为N2的矢量,这样就认为这幅图像是位于N2维空间中的一个点,这种图像的矢量表示就是原始的图像空间,但是这个空间仅是可

2、以表示或者检测图像的许多个空间中的一个。不管子空间的具体形式如何,这种方法用于图像识别的基本思想都是一样的,首先选择一个合适的子空间,图像将被投影到这个子空间上,然后利用对图像的这种投影间的某种度量来确定图像间的相似度,最常见的就是各种距离度量。因此,本次采用PCA算法确定一个子空间,最后使用最小距离法进行识别,并用matlab实现。 二、PCA 原理和人脸识别方法 1)K-L 变换 K-L 变换以原始数据的协方差矩阵的归一化正交特征矢量构成的正交矩阵作为变换矩阵,对原始数据进行正交变换,在变换域上实现数据压缩。它具有去相关性、能量集中等特性,属于均方误差测度下,失真最小的一种变换,

3、是最能去除原始数据之间相关性的一种变换。PCA 则是选取协方差矩阵前 k 个最大的特征值的特征向量构成 K-L 变换矩阵。 2)主成分的数目的选取 保留多少个主成分取决于保留部分的累积方差在方差总和中所占百分比(即累计贡献率),它标志着前几个主成分概括信息之多寡。实践中,粗略规定一个百分比便可决定保留几个主成分;如果多留一个主成分,累积方差增加无几,便不再多留。 3)人脸空间建立 假设一幅人脸图像包含 N 个像素点,它可以用一个 N 维向量 Γ 表示。这样,训练样本库就可以用 Γi(i=1,...,M)表示。协方差矩阵 C 的正交特征向量就是组成人脸空间的基向量,即特征脸。

4、 将特征值由大到小排列:λ1≥λ2≥...≥λr,其对应的特征向量为 μk。这样每一幅人脸图像都可以投影到由 u1,u2,...,ur张成的子空间中。因此,每一幅人脸图像对应于子空间中的一点。同样,子空间的任意一点也对应于一幅图像。 4)人脸识别 有了这样一个由"特征脸"张成的降维子空间,任何一幅人脸图像都可以向其投影得到一组坐标系数,这组系数表明了该图像在子空间中的位置,从而可以作为人脸识别的依据。计算数据库中每张图片在子空间中的坐标,得到一组坐标,作为下一步识别匹配的搜索空间。 计算新输入图片在子空间中的坐标,采用最小距离法,遍历搜索空间,得到与其距离最小的坐标向量,该向量对应的人

5、脸图像即为识别匹配的结果。 三、实验步骤 1) 每人选取 4 幅共 60 幅作为训练样本,将每一幅图像(128*128)写成列向量形式排列成矩阵 2) 求协方差矩阵 3) 求协方差矩阵特征值—求特征向量(特征脸)—将特征向量排列成变换矩阵 4) 计算每幅图像的投影 5) 计算待识别人脸的投影 6) 遍历搜索进行匹配 四、实验结果与分析 matlab 界面效果如下所示 图 1 用户使用界面 图 2 选择图片 图 3 图片选择后 图 4 识别后 由于利用了标准库,并且识别的人数不是很多,也没有选择有大块左阴影和右阴影的人作为训练集以及测试,所以

6、最终的结果还是非常不错的,识别率可达100%。 但是选择有较大阴影的人做测试,则会出现识别错误,所以 PCA 算法还是存在一定的局限性。 图 5 识别错误 主要代码展示 function pushbutton1_Callback(hObject, eventdata, handles) % hObject handle to pushbutton1 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handle

7、s and user data (see GUIDATA) % read image to be recognize %读取图片 global im; [filename, pathname] = uigetfile({'*.bmp'},'choose photo'); str = [pathname, filename]; im = imread(str); axes( handles.axes1); imshow(im); % --- Executes on button press in pushbutton2. function

8、pushbutton2_Callback(hObject, eventdata, handles) % hObject handle to pushbutton2 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) global im global reference global W %均值向量

9、按列排成的变换矩阵 global imgmean %均值向量 global col_of_data global pathname global img_path_list % 预处理新数据 im = double(im(:)); objectone = W'*(im - imgmean); %计算每幅图像的投影 distance = 100000000; % 最小距离法,寻找和待识别图片最为接近的训练图片 for k = 1:col_of_data temp = norm(objectone - referen

10、ce(:,k)); if(distance>temp) aimone = k; distance = temp; aimpath = strcat(pathname, '/', img_path_list(aimone).name); axes( handles.axes2 ) imshow(aimpath) end end % 显示测试结果 % aimpath = strcat(pathname, '/', img_path_list(aimone).name); % axes( handles.axes2 ) % imsh

11、ow(aimpath) % --- Executes on button press in pushbutton3. function pushbutton3_Callback(hObject, eventdata, handles) % hObject handle to pushbutton3 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUID

12、ATA) global reference global W global imgmean global col_of_data global pathname global img_path_list % 批量读取指定文件夹下的图片 128*128 pathname = uigetdir; img_path_list = dir(strcat(pathname,'\*.bmp')); img_num = length(img_path_list); imagedata = []; if img_num >0 for j = 1:i

13、mg_num img_name = img_path_list(j).name; temp = imread(strcat(pathname, '/', img_name)); temp = double(temp(:)); imagedata = [imagedata, temp]; end end col_of_data = size(imagedata,2); % 中心化 & 计算协方差矩阵 imgmean = mean(imagedata,2); for i = 1:col_of_data imagedata(:,i) =

14、imagedata(:,i) - imgmean; end covMat = imagedata'*imagedata; [COEFF, latent, explained] = pcacov(covMat); % 选择构成 95%能量的特征值 i = 1; proportion = 0; while(proportion < 95) proportion = proportion + explained(i); i = i+1; end p = i - 1; % 特征脸 W = imagedata*COEFF; % N*M 阶 W = W(:,1:p); % N*p 阶 % 训练样本在新座标基下的表达矩阵 p*M reference = W'*imagedata;

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服