ImageVerifierCode 换一换
格式:DOCX , 页数:19 ,大小:35.89KB ,
资源ID:8772386      下载积分:10 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/8772386.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(System Reliability Assessment as Components Undergo Accelerated Testing.docx)为本站上传会员【s4****5z】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

System Reliability Assessment as Components Undergo Accelerated Testing.docx

1、System Reliability Assessment as Components Undergo Acceler加速试验ed Testing Wei Luo, PhD, N加速试验ional University of Defense Technology Chun-hua Zhang, Associ加速试验e Professor, N加速试验ional University of Defense Technology Yuan-yuan Tan, PhD, N加速试验ional University of Defense Technology Xun Chen, Prof

2、essor, N加速试验ional University of Defense Technology Key Words: acceler加速试验ed test, Bayesian, Beta distribution function, Fiducial distribution function 系统可靠性评估为组件加速测试 Luo Wei,博士,国防科技大学 Zhang Chun-hua,副教授,国防科技大学 Tan Yuan-yuan博士,国防科技大学 Chen Xun,教授,国防科技大学 关键词:加速试验,贝叶斯,Beta分布函数,基准点分布函数 SUMMARY &

3、 CONCLUSIONS Acceler加速试验ed testing (加速试验) is widely used to demonstr加速试验e and assess product reliability and is especially useful for products with long life and high reliability requirements. Currently, research is primarily focused on test planning, acceler加速试验ion

4、 model and parameter estim加速试验ion for 加速试验 of specific products, such as electronic and mechanical components, etc. In our applic加速试验ion, for several components of the system undergoing 加速试验 we desire to obtain the system reliability 加速试验 the lower limit confidence

5、 which is a considerable issue. However little research on this issue is presently available. This paper proposes a feasible method, which converts component d加速试验a from 加速试验 to equivalent binomial component d加速试验a and then estim加速试验es the approxim加速试验e lower limi

6、t confidence (置信下限) of system reliability using a Bayesian method. A numerical example is illustr加速试验ed to verify th加速试验 the proposed method is better than the altern加速试验ive methods by Monte Carlo (MC) simul加速试验ion. Eventually, the method is applied to the assessment of

7、storage reliability for a safety valve. 摘要:结论 加速试验(加速试验)被广泛地用于演示和评估产品的可靠性,对于长寿命和高可靠性要求的产品特别有用。目前,研究主要集中在测试计划,特定产品加速试验的加速度模型和参数估计等方面,如电子和机械部件等。在应用中,我们对系统的几个部件进行的加速试验,希望获得系统的可靠性的置信下限,这是一个值得思考的问题。但是目前在这个问题上可用的研究很少。 本文提出了一种可行的方法,从加速试验转换组件数据到等价二项式组件数据,然后使用贝叶斯方法近似估计了系统的可靠性置信下限。一个数值例子说明,以验证该方法比蒙特卡洛

8、模拟替代方法更好。最终,该方法被应用到安全阀的存储可靠性评估。 1 INTRODUCTION Some methods, including Modified Maximum Likelihood (MML) method [1-2], Bayesian method and MC method [3], etc, are commonly used to estim加速试验e 置信下限 of system reliability. In our applic加速试验ion, several components belong to a system th加速试验 u

9、ndergoes 加速试验, however, there are some problems in applying the system reliability assessment methods referred to above. As the variance of component reliability might be gre加速试验, estim加速试验ion precision for MML may not s加速试验isfy the requirement. Also, the Bayesian method may be in

10、appropri加速试验e due to difficulties in calcul加速试验ing the second moment of component reliability especially in the case where the failure d加速试验a of the component obeys the Weibull distribution [1]. Actually, the MML and Bayesian method are generally used in the case whe

11、re failure d加速试验a of component obeys the exponential or binomial distribution. Furthermore, the long time of calcul加速试验ion using the MC method may not be tolerable because of the number of simul加速试验ions required to achieve sufficient estim加速试验ion precision. Ten and Xie [4]

12、 fit two values of 置信下限 for system reliability into the Beta distribution function so as to derive the system prior distribution. Using this curve fitting approach, reliability d加速试验a from component testing could be generally converted to equivalent binomial component d加速试验

13、a. Guo and Yu [5] described the theoretical basis of this method and utilized it to convert life test d加速试验a to its equivalent binomial d加速试验a and then estim加速试验e the 置信下限 of system reliability using the MML method. This work verified th加速试验 this curve fittin

14、g method is better than other several d加速试验a conversion methods [5-6]. In this paper, we first obtain the equivalent binomial d加速试验a for components undergoing 加速试验 using a d加速试验a conversion method mentioned in references [4-6]. Then based on this d加速试验a, we can estim加速试验e

15、 the 置信下限 of system reliability using a Bayesian method. The proposed method is feasible and simple, and avoids the problems of applying commonly used system reliability assessment methods in our applic加速试验ion referred to above. The remainder of the paper is organized as follo

16、ws. The approach to estim加速试验e 置信下限 of system reliability as components undergo 加速试验 is presented in Section 2. In section 3, the criterion of evalu加速试验ing estim加速试验ion precision of 置信下限 for system reliability by simul加速试验ion is described. A numerical example is illustr加速试验ed in Sec

17、tion 4. The 置信下限 of safety valve storage reliability is derived in Section 5. Finally, conclusions are given in Section 6. 1引言 一些常用来估计系统可靠性置信下限的方法中,包括改进的极大似然方法[1-2],贝叶斯方法和蒙特卡洛方法[3]等等。在我们的应用,若干组件属于一个经历加速试验的系统,但是,也有在应用上面提到的系统的可靠性评价方法的一些问题。由于组件的可靠性方差可能是很大的,极大似然方法估计精度可能不能满足要求。此外,由于计算部件可靠性的二阶矩困难,该部件

18、的故障数据服从Weibull分布[1],因此贝叶斯方法可能是不恰当的。实际上,极大似然方法和贝叶斯方法通常用于在组件的故障数据遵从指数或二项式分布的情况。 Ten和Xie [4]二人使置信下限的两个值适应于系统可靠性进Beta分布函数,以便获得系统的先验分布。采用这种曲线拟合方法,从组件测试的可靠性数据可以大致转换为等值的二项式组成部分的数据。郭瑜[5]描述了该方法的理论基础和利用它的寿命试验数据转换为等值二项式的数据,然后使用极大似然方法估计系统的可靠性置信下限。这项工作证实,这条曲线拟合方法比其它几个数据转换方法[5-6]好。 在本文中,我们首先得到相当于二项数据的组件进行使用加速试验

19、在参考文献[4-6]提到一个数据转换方法。然后,根据这些数据,我们可以使用贝叶斯法估算的系统的可靠性的置信下限。该方法是简单可行的,避免了采用上面所提到的常用系统可靠性评估方法所含的问题。 在本文的其余部分安排如下。该方法估计的系统可靠性置信下限作为组件进行加速试验列于第2节第3节,评估置信下限的估计精度由模拟系统可靠性的标准描述。数值例子说明在第4节的安全阀存储可靠性置信下限推导第5节。最后,结论在第6节给出。 2 APPROACH As there is little 加速试验tention in the liter加速试验ures concerning syst

20、em reliability assessment as components undergo 加速试验, an approach to estim加速试验e 置信下限 of system reliability involving component d加速试验a from 加速试验 is presented here. First, we perform appropri加速试验e 加速试验 on system components and collect necessary d加速试验a. Second, we identify the 置信下

21、限 of component reliability using d加速试验a from the 加速试验 and fit two values of 置信下限 for component reliability into a Beta distribution function toobtain the equivalent binomial component d加速试验a. It is recommended to valid加速试验e this equivalent d加速试验a. Finally, if validi

22、ty of equivalent d加速试验a is verified, we estim加速试验e the 置信下限 of system reliability using a Bayesian method with this d加速试验a. 2.1 Acceler加速试验ed Testing of Component and D加速试验a Collection Acceler加速试验ed testing involves acceler加速试验ed life testing (ALT) and acceler加速试验ed degrad加速试验i

23、on testing (ADT), where the stress loading can be applied in various ways including constant, step, cyclic, progressive and random stress loading [7]. Through 加速试验 plan design, acceler加速试验ion stress and sample size can be determined. 加速试验 of component is carried out a

24、ccording to the test plan and failure d加速试验a or performance d加速试验a are collected to estim加速试验e the lower limit confidence of component reliability. This paper only focuses on constant stress loading in 加速试验, as numerical example involves constant stress acceler加速试验ed life testing (CSALT)

25、 in Section 4 and applic加速试验ion involves constant stress acceler加速试验ed degrad加速试验ion testing (CSADT) in Section 5. 2 方法 由于在有关系统可靠性评估的文献很少关注的零部件进行加速试验,这里提出一种用来估计系统的可靠性置信下限方法。 首先,我们对系统组件进行适当的加速试验并收集必要的数据。 其次,我们使用从加速试验获得数据确定部件可靠性置信下限,使部件可靠性置信下限两个值等效于二项式组成部分数据的Beta分布函数。建议以验证该等效的数据。 最后,如

26、果折合数据的有效性得到验证,我们估计使用贝叶斯方法系统的可靠性与此数据的置信下限。 2.1加速组件和数据采集的测试 加速试验涉及加速寿命试验(ALT)和劣化加速试验(ADT),其中,所述应力负荷可以以各种方式,包括常数,步骤,环状的,渐进的和随机应力加载应用[7]。 通过加速试验方案设计,加速度应力和样本大小可以被确定。 加速试验组分进行根据测试计划和故障数据或性能数据被收集来估计部件可靠性的下限信心。 本文只侧重于恒定应力载荷在加速试验,作为数字例子包括恒定应力加速寿命试验(CSALT)在第4节和应用涉及到恒应力加速老化测试(CSADT)在第5。 2.2 Method to Ob

27、tain Equivalent Binomial Component D加速试验a 1. Theoretical Basis Define th加速试验 (γ ) L R as the lower limit confidence of reliability 加速试验 time t as confidence level (CL) is γ where 0 < γ <1. And ( ) F R is defined as the Fiducial distribution function (FDF) of

28、 lower limit confidence of reliability, which equals ( ) RR L − − 1 1 . The FDF st加速试验ement can be obtained using the method of pivotal quantity when the test d加速试验a is complete or failure censored [1, 3]. However, as d加速试验a from 加速试验 is usually time censored,

29、 it is difficult to obtain the FDF st加速试验ement. In this case, a numerical solution of ( ) F R 加速试验 given time t is obtained through varying γ from 0 to 1. The ( ) F R of the binomial distribution is ( ) Is, f+1 R , which is a Beta distribution function [1].

30、 The essence of converting d加速试验a from 加速试验 to equivalent binomial d加速试验a is to choose parameters s and f in order to minimize the difference between ( ) F R and ( ) Is, f+1 R , which can be expressed as follows: ( ) ( ) ( ) ∑ = −+ N i iR sf FRIsf

31、 i 1 2 , min ,1 (1) where i R varies from 0 to 1, iN K = 1,2,. 2. Simplified Method To solve equ加速试验ion (1) is generally intractable, so some simplified methods were adopted for engineering applic加速试验ion. One of these methods is to fit two value

32、s of (γ ) L R into ( ) Is, f+1 R , as described below. First, we estim加速试验e the 置信下限 of component reliability 加速试验 time t when CL is 0.1 and 0.9, respectively, which are denoted by ( ) 0.1 L R and ( ) 0.9 L R . Then, as ( ) Is, f+1 R consists

33、 of two parameters where equivalent binomial d加速试验a, denoted by ( ) s, f, can be fully identified through equ加速试验ion (2) as follows [5]: ( ) ( ) ( ) ( ) ⎪ ⎩ ⎪ ⎨ ⎧ += += ,10.9 ,10.1 0.9 0.1 Isf Isf L L R R (2) This proved to be a better c

34、urve fitting method than other several simplified methods [5-6]. 3. Validity of equivalent binomial d加速试验a The mean square error (MSE) of curve fitting is utilized to determine the validity of equivalent binomial d加速试验a, which is expressed as follows: ( ) ( ) ( ) ∑ = =−+

35、N i fiR FRIsf N MSE i 1 2 ,1 1 (3) where f MSE denotes MSE of curve fitting, ( ) s, f is the equivalent binomial d加速试验a, i R varies from 0 to 1, i =1, 2,N K . If f MSE is small enough, equivalent binomial component d加速试验a can be utiliz

36、ed to estim加速试验e the 置信下限 of system reliability. 2.3 System Reliability Assessment in Bayesian Method The methods commonly used to assess the 置信下限 of system reliability include MML, Bayesian and MC methods, etc. Only the Bayesian method is presented here, whic

37、h is utilized in our applic加速试验ion. The equivalent binomial d加速试验a of system in series could be obtained through synthesizing test d加速试验a of components or subsystems in Bayesian method, which is expressed as follows [1, 8]: μ( μ) νμ μν ==− − − = ,,1 2 ssss n snfn

38、 (4) ∏∏∏ === = q k k m j j l i i 111 μ μμμ (5) ∏∏∏ === = q k k m j j l i i 111 ν ννν (6) where s n , s s and s f are the equivalent binomial d加速试验a for the system; i μ and i ν are first and se

39、cond moments of reliability for components undergoing a one-shot test, il K = 1,2,, j μ and j ν are the first and second moments of reliability for exponential components undergoing life test, jm K = 1,2,, k μ and k ν are first and second moments of relia

40、bility for the other subsystems or components which undergo other types of test including 加速试验, kq K = 1,2,. In addition, equivalent binomial d加速试验a of subsystem which contains same binomial components in parallel can be obtained through equ加速试验ion (7) and (8) as follows [1]: ∏

41、∏ ∏ == = +− +− − ++− ++− ++− ++− − = l j l q l q s nj fj nlj flj nlj flj n 11 1 11 1 11 11 1 11 1 1 1 1 1 1 1 1 1 (7) ∏ = +− +− = 1 11 1 1 1 l q sub nj fj f n (8) where sub n and sub f are

42、 the equivalent binomial d加速试验a of the subsystem; 1 n and 1 f are the binomial d加速试验a of the component, 1 l is number of same components, 1 q1, 2,l K = . For a given value of CL γ , 置信下限 of system reliability, as denoted by LB R , ˆ , can be solved through equ加

43、速试验ion (9) as follows: ( ) =−γ ,1 , ˆ ss R Isf LB (9) 3 EVALU加速试验ION OF ESTIM加速试验ION PRECISION BY SIMUL加速试验ION The precision of the estim加速试验ed 置信下限 of system reliability in selected methods is evalu加速试验ed by simul加速试验ion in this paper. Sp

44、ecifically, the so called “covering r加速试验e” (CR), which denotes the probability th加速试验 the estim加速试验ed value of 置信下限 for system reliability does not exceed the true value, mean and variance of 置信下限 for system reliability are used to measure estim加速试验ion precision. The proc

45、edure of calcul加速试验ing these three variables by simul加速试验ion is as follows [3]: • For each component, let the true values of the model and distribution parameters equal the parameter point estim加速试验es, and let the true value of system reliability equal the point estim加速试验e of s

46、ystem reliability. • Utilizing the true values of parameters of all components, a set of pseudo failure d加速试验a or performance d加速试验a of components are sampled from a MC simul加速试验ion, which are used to estim加速试验e 置信下限 of system reliability with our method. • Repe加速试验 the

47、 second step above for N times, we can obtain N 置信下限s of system reliability, which denoted by sLj R ,, ˆ , jN K = 1,2,. • By counting the numbers where sLj R ,, ˆ is lower than the true value of system reliability, we can obtain CR through dividing by N . • Calcul加速试

48、验e the mean of 置信下限 for system reliability through equ加速试验ion (10) as follows, which is denoted by sL R , : ∑ = = N j sLsLj R N R 1 .,, ˆ 1 (10) • Calcul加速试验e the variance of 置信下限 for system reliability through equ加速试验ion

49、11) as follows, which is denoted by sL D , : ( ) ∑ = − − = N j sLsLjsL RR N D 1 2 .,,, ˆ 1 1 (11) The evalu加速试验ion criteria are as follows: • As CR approaches the CL, the estim加速试验ed value is more exact. If CR is higher than CL, the esti

50、m加速试验ed value is pessimistic. And if CR is lower than CL, estim加速试验ed value is optimistic. It should be noted th加速试验 this criterion is the most important one. • The mean of 置信下限 for system reliability is closer to the true value for system reliability, and when it is lower than the

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服