ImageVerifierCode 换一换
格式:DOC , 页数:13 ,大小:432KB ,
资源ID:875710      下载积分:11 金币
验证码下载
登录下载
邮箱/手机:
图形码:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/875710.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请


权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4009-655-100;投诉/维权电话:18658249818。

注意事项

本文(高中全程复习方略课时提能训练单元评估检测九苏教版数学文讲解.doc)为本站上传会员【胜****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

高中全程复习方略课时提能训练单元评估检测九苏教版数学文讲解.doc

1、温馨提示: 此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。 单元评估检测(九) (第九章) (120分钟 160分) 一、填空题(本大题共14小题,每小题5分,共70分.把答案填在题中横线上) 1.某单位员工按年龄分为A、B、C三个组,其人数之比为5∶4∶1,现用分层抽样的方法从总体中抽取一个容量为20的样本,已知C组中甲、乙两人均被抽到的概率为,则该单位员工总数为_______. 2.在样本的频率分布直方图中,一共有m(m≥3)个小矩形,第3个小矩形的面积等于其余m-1个小矩形面积之和的,且样本容量为100,则第3组的频数是__

2、 3.(2012·广州模拟)如图是某赛季甲、乙两名篮球运动员每场比赛得分的茎叶图,则甲、乙两人这几场比赛得分的中位数之和是_______. 4.某样本数据的频率分布直方图的部分图形如图所示,则数据在[55,65)的频率约为_______. 5.某企业三月中旬生产A、B、C三种产品共3 000件,根据分层抽样的结果,该企业统计员制作了如下的统计表格: 产品类别 A B C 产品数量(件) 1 300 样本容量(件) 130 由于不小心,表格中A、C产品的有关数据已被污染,统计员记得A产品的样本容量比C产品的样本容量多10,根据以上信息,

3、可得C产品的数量是_______件. 6.已知一个回归直线方程为=1.5x+45,x∈{1,7,5,13,19},则=_______. 7.为了调查某产品的销售情况,销售部门从下属的92家销售连锁店中抽取30家了解情况.若用系统抽样法,则抽样间隔和随机剔除的个体数分别为_______. 8.(2012·盐城模拟)一组数据共有7个数,记得其中有10,2,5,2,4,2,还有一个数没记清,但知道这组数的平均数、中位数、众数依次成等差数列,这个数的所有可能值的和为_______. 9.连掷两次骰子分别得到点数m、n,则向量(m,n)与向量(-1,1)的夹角θ> 90°的概率是_____

4、 10.在区间[-1,1]上随机取一个数x,则sin的值介于-与之间的概率为_______. 11.(2012·温州模拟)从数字1,2,3,4,5这5个数中,随机抽取2个不同的数,则这两个数的和为偶数的概率是_______. 12.(2012·徐州模拟)已知函数f(x)=x3-3x,当x在区间[-1,3]上任意取值时,函数值不小于0又不大于2的概率是_______. 13.(2012·宿迁模拟)如图,墙上挂有边长为a的正方形 木板,它的四个角的空白部分,都是以正方形的顶点为圆心,半径为的圆弧,某人向此板投镖,假设每次都能击中木板,且击中木板上每个点的可能性都一样,则它击中阴影部

5、分的概率是_______. 14.图(2)中实线围成的部分是长方体(图(1))的平面展开图,其中四边形ABCD是边长为1的正方形.若向虚线围成的矩形内任意抛掷一质点,它落在长方体的平面展开图内的概率是,则此长方体的体积是_______. 二、解答题(本大题共6小题,共90分.解答时应写出必要的文字说明、证明过程或演算步骤) 15.(14分)(2012·福州模拟)如图是某市有关部门根据该市干部的月收入情况,作抽样调查后画出的样本频率分布直方图,已知图中第一组的频数为4 000, 请根据该图提供的信息解答下列问题:图中 每组包括左端点,不包括右端点,如第一组 表示收入在[1 000

6、1 500)的范围内. (1)求样本中月收入在[2 500,3 500)内的人 数. (2)为了分析干部的收入与年龄、职业等方面的关系,必须从样本的各组中按月收入再用分层抽样方法抽出100人作进一步分析,则月收入在[1 500,2 000)内的这段应抽多少人? (3)试估计样本数据的中位数. 16.(14分)下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对照数据: x 3 4 5 6 y 2.5 3 4 4.5 (1)请画出上表数据的散点图; (2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回

7、归方程=x+; (3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤? 17.(14分)(2012·太原模拟)甲、乙两位学生参加数学竞赛培训,现分别从他们在培训期间参加的若干次预赛成绩中随机抽取8次,记录如下: 甲:82 81 79 78 95 88 93 84 乙:92 95 80 75 83 80 90 85 (1)用茎叶图表示这两组数据,并写出乙组数据的中位数; (2)经过计算知甲、乙两人预赛的平均成绩分别为=85,=85,甲的方差为D1=35.5,乙的方差

8、为D2=41.现要从中选派一人参加数学竞赛,你认为选派哪位学生参加较合适?请说明理由. 18.(16分)已知集合P={1,2,4},Q={1,3,4,5,7},若a∈P,b∈Q. (1)列出所有的实数对(a,b); (2)设事件A:函数f(x)=()x为增函数,求事件A的概率. 19.(16分)(2012·常州模拟)公安部发布酒后驾驶处罚的新规定(一次性扣罚12分)已正式施行.酒后违法驾驶机动车的行为分成两个档次:“酒后驾车”和“醉酒驾车”,其检测标准是驾驶人员血液中的酒精含量Q(简称血酒含量,单位是毫克/100毫升),当20≤Q<80时,为酒后驾车;当Q≥80时,为醉酒驾车.某市公

9、安局交通管理部门在某路段的一次拦查行动中,依法检查了200辆机动车驾驶员的血酒含量(如下表). 血酒 含量 (0,20) [20,40) [40,60) [60,80) [80,100) [100,120] 人数 194 1 2 1 1 1 依据上述材料回答下列问题: (1)分别写出酒后违法驾车发生的频率和酒后违法驾车中醉酒驾车的频率; (2)从酒后违法驾车的司机中,抽取2人,请一一列举出所有的抽取结果,并求取到的2人中含有醉酒驾车的概率.(酒后驾车的人用大写字母如A,B,C,D表示,醉酒驾车的人用小写字母如a,b,c,d表示) 20.(16分)袋子中有质

10、地、大小完全相同的4个球,编号分别为1,2,3,4.甲、乙两人玩一种游戏:甲先摸出一个球,记下编号,放回后乙再摸一个球,记下编号,若两个编号的和为奇数算甲胜,否则算乙胜.记基本事件为(x,y),其中x,y分别为甲、乙摸到的球的编号. (1)列举出所有的基本事件,并求甲胜且编号的和为5的事件发生的概率; (2)比较甲胜的概率与乙胜的概率,并说明这种游戏规则是否公平.(无详细解答过程,不给分) (3)如果请你猜这两球的号码之和,猜中有奖.猜什么数获奖的可能性最大?说明理由. 答案解析 1.【解析】设甲被抽到的概率为x,单位员工总数为a,由题意知乙被抽到的概率为x. ∴x2=

11、∴x=,∴,∴a=100. 答案:100 2.【解析】设第3个小矩形的面积为S,则由频率分布直方图性质可知其余m-1个小矩形面积之和为1-S, ∴S=(1-S)×,得S= , ∴第3组的频率是,∵样本容量为100, ∴第3组的频数为100×=20. 答案:20 3.【解题指南】求解本题需看懂茎叶图,找出甲、乙的中位数,相加即得. 【解析】由题意知:甲的比赛得分由高到低为: 41,39,37,34,28,26,23,15,13 乙的比赛得分由高到低为: 47,45,38,37,36,33,32,25,24 ∴甲、乙的中位数分别为28,36,故和为64. 答案:64

12、4.【解析】在图形中并没有明确的数据分布在区间[55,65)中,但是有[50,60),[60,70)段上的频率分布,据此估计样本在[55,65)上的频率应该在[50,60)和[60,70)的频率分布之间,因为在[50,60)之间的频率为0.02,在[60,70)之间的频率为0.03,可得数据在[55,65)的频率约为0.025. 答案:0.025 5.【解析】设C产品的数量为x,则A产品的数量为1 700-x,C产品的样本容量为a,则A产品的样本容量为10+a,由分层抽样的定义可知:,∴x=800. 答案:800 6.【解析】因为=(1+7+5+13+19)=9,且=1.5+45,所以

13、=1.5×9+45=58.5. 答案:58.5 【误区警示】本题易错之处是根据x的值及=1.5x+45求出y的值再求,因=1.5x+45求得的y值不是原始数据,故错误. 7.【解析】因为92÷30不是整数,因此必须先剔除部分个体数,因为92=30×3+2,故剔除2个即可,而间隔为3. 答案:3,2 8.【解题指南】设出未知数,根据这组数的平均数、中位数、众数依次成等差数列,列出关系式,因为x的取值不同所得的结果不同,所以要讨论x的三种不同情况. 【解析】设这个数字是x,则平均数为,众数是2,若x≤2,则中位数为2,此时x=-11,若2

14、若x≥4,则中位数为4,2×4=+2,x=17, 所有可能值为-11,3,17,其和为9. 答案:9 9.【解析】∵(m,n)·(-1,1)=-m+n<0,∴m>n. 基本事件总共有6×6=36(个),符合要求的有(2,1),(3,1),(3,2),(4,1),(4,2),(4,3),(5,1),…,(5,4),(6,1),…,(6,5),共1+2+3+4+5=15(个). ∴P=. 答案: 10.【解析】∵-1≤x≤1,∴-≤≤. 由-≤sin≤,得-≤≤, 即-≤x≤1,故所求事件的概率为. 答案: 11.【解析】从5个数中随机抽取2个数,共有(1,2)(1,3)(1

15、4)(1,5)(2,3)(2,4)(2,5)(3,4)(3,5)(4,5)10种情况,而和为偶数的有(1,3)(1,5)(2,4)(3,5)4种情况, 所以所求概率为P=. 答案: 12.【解题指南】作出函数f(x)=x3-3x的图象,结合函数图象和函数的单调性,找出符合题意的区域. 【解析】函数f(x)=x3-3x的两个极值点是-1、1,三个零点是±、0,结合函数图象和函数的单调性可以知道,当x在区间[-1,0],[,2]上取值时符合要求,故所求的概率是. 答案: 13.【解析】正方形面积为a2,四个四分之一圆面积和为S=π·()2=, ∴阴影区域的面积为(1-)a2, ∴

16、P=. 答案: 14.【解题指南】设长方体的高为h,用h表示出图(2)中虚线围成的矩形的面积,及平面展开图的面积,再由几何概型的概率公式构造含有h的方程,求出h后再求解体积. 【解析】设长方体的高为h,则图(2)中虚线围成的矩形长为2+2h,宽为1+2h,面积为(2+2h)(1+2h),展开图的面积为2+4h;由几何概型的概率公式知,得h=3,所以长方体的体积是V=1×3=3. 答案:3 15.【解析】(1)∵月收入在[1 000,1 500)内的频率为 0.000 8×500=0.4,且有4 000人, ∴样本的容量n==10 000; 月收入在[1 500,2 000)内的

17、频率为0.000 4×500=0.2; 月收入在[2 000,2 500)内的频率为0.000 3×500=0.15; 月收入在[3 500,4 000)内的频率为0.000 1×500=0.05. ∴月收入在[2 500,3 500)内的频率为1-(0.4+0.2+0.15+0.05)=0.2. ∴样本中月收入在[2 500,3 500)内的人数为0.2×10 000=2 000. (2)∵月收入在[1 500,2 000)内的人数为 0.2×10 000=2 000, ∴再从10 000人中用分层抽样方法抽出100人,则月收入在[1 500,2 000)内的这段应抽取 10

18、0×=20(人). (3)由(1)知月收入在[1 000,2 000)内的频率为 0.4+0.2=0.6>0.5, ∴样本数据的中位数为1 500+=1 500+250=1 750(元). 16.【解析】(1)如图所示: (2) =3×2.5+4×3+5×4+6×4.5=66.5, ==4.5,==3.5, =32+42+52+62=86, ==0.7, =-=3.5-0.7×4.5=0.35. 故线性回归方程为=0.7x+0.35. (3)根据回归方程的预测,现在生产100吨产品消耗的标准煤的数量为0.7×100+0.35=70.35, 故能耗减少了90-70.3

19、5=19.65(吨标准煤). 17.【解析】(1)作出如图所示的茎叶图,易得乙组数据的中位数为84. (2)派甲参赛比较合适,理由如下: ∵=85,=85,D1=35.5,D2=41, ∴=,D11,使>1的实数对(a,b)有(1,3),(1,4)(1,5)

20、1,7),(2,3),(2,4),(2,5),(2,7),(4,5),(4,7)共10种情况,所以事件A的概率为P(A)=. 19.【解析】(1)由表可知,酒后违法驾车的人数为6人,则违法驾车发生的频率为:或0.03; 酒后违法驾车中有2人是醉酒驾车,则酒后违法驾车中醉酒驾车的频率为. (2)设酒后驾车的4人分别为A、B、C、D;醉酒驾车的2人分别为a、b,则从违法驾车的6人中,任意抽取2人的结果有:(A,B),(A,C),(A,D),(A,a),(A,b),(B,C),(B,D),(B,a),(B,b),(C,D),(C,a),(C,b),(D,a),(D,b),(a,b)共有15

21、个. 设取到的2人中含有醉酒驾车为事件E,则事件E含有9个结果:(A,a),(A,b),(B,a),(B,b),(C,a),(C,b),(D,a),(D,b),(a,b). ∴P(E)=. 20.【解析】(1)共有16个等可能事件,列举如下:(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4). 设甲胜且两数字之和为5为事件A,则事件A包含(1,4),(2,3),(3,2),(4,1)共4个基本事件. ∴P(A)=. (2)这种游戏公平. 设甲

22、胜为事件B,乙胜为事件C,则甲胜包含(1,2),(1,4),(2,1),(2,3),(3,2),(3,4),(4,1),(4,3)共8个基本事件,∴甲胜的概率P(B)=. 从而乙胜的概率P(C)=1-P(B)=, ∴P(B)=P(C),故这种游戏公平. (3)记“所摸出的两球号码之和为i”为事件Ai(i=2,3,4,5,6,7,8). 由(1)中可知事件A2的基本结果为1种,事件A3的基本结果为2种,事件A4的基本结果为3种,事件A5的基本结果为4种,事件A6的基本结果为3种,事件A7的基本结果为2种,事件A8的基本结果为1种,所以摸出的两球号码之和为5的概率最大. 答:猜5获奖的可

23、能性最大. 【方法技巧】较复杂事件的概率的求法 (1)求某些较复杂的事件的概率,通常有两种方法: 一是将所求事件的概率化成一些彼此互斥的事件的概率和;二是先求此事件的对立事件的概率.若用直接法求某一事件的概率较为复杂时,第二种方法常可使概率的计算得到简化. (2)如果采用第一种方法,一定要将事件分拆成若干互斥的事件,不能重复和遗漏,如果采用第二种方法,一定要找准其对立事件,否则容易出现错误. (3)一般地此类问题均可用随机事件的概率求法来探求,但利用互斥事件和对立事件来处理往往可使问题得以简化. (4)通过对较复杂事件概率的探求,充分体会多种方法解决问题的思维方式,从而提高综合应用知识解决问题的能力.

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服