ImageVerifierCode 换一换
格式:DOC , 页数:6 ,大小:66.50KB ,
资源ID:8750057      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
图形码:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/8750057.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请。


权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4009-655-100;投诉/维权电话:18658249818。

注意事项

本文(优课教学设计.doc)为本站上传会员【仙人****88】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

优课教学设计.doc

1、优课教学设计 邹丽蓉 八年级数学组是一个很团结,很上进的备课组,每个星期,我们都能进行听评课或者集体备课活动。以下是我的一次教学研究课的课堂实录: 一、教学情况分析: 教科书在学生已有的知识经验的基础上,提出了本课的具体学习任务:理解一元二次方程的概念及其二次项、一次项、常数项;了解一元二次方程的一般形式,并会将一元二次方程转化成一般形式。一元二次方程是解决实际问题的一种数学模型,它不仅是初中阶段学习的重点内容,而且是后面学习二次函数的基础,起着承上启下的作用。本节课的教学目标是: 1、经历探索一元二次方程概念的过程,理解一元二次方程中的二次项、一次

2、项、常数项;了解一元二次方程的一般形式,并会将一元二次方程转化成一般形式。 2、经历抽象一元二次方程的概念的过程,进一步体会方程是刻画现实世界的一个有效数学模型;在探索过程中培养和发展学生学习数学的主动性,提高数学的应用能力。 3、培养学生主动参与、合作交流的意识;经历独立克服困难和运用知识解决问题的成功体验,提高学习数学的自信心。 二、教学过程分析 本节课设计了六个教学环节:第一环节:创设情境,引入新课;第二环节:建立模型,探索新知;第三环节:巩固应用,形成技能;第四环节:拓展延伸,层层攀高;第五环节:感悟与收获;第六环节:布置作业。 第一环节:创设情景,引入新课 活动内容:通过

3、三个具体的问题,引导学生得到三个方程。 1、艺术设计 一块四周镶有宽度相等的花边的地毯如图所示,它的长为8m,宽为5m。如果地毯中央长方形图案的面积为18m2,那么花边有多宽? 2、趣味数学: 先观察下面等式: 102+112+122=132+142 你还能找到其它的五个连续整数,使前三个数的平方和等于后两个数的平方和吗? 3、梯子移动 如图,一个长为10m的梯子斜靠在墙上,梯子的顶端距地面的垂直距离为8m。如果梯子的顶端下滑1m,那么梯子的底端滑动多少米?          活动目的:从学生熟悉的三个实际问题入手,引导学生回顾列方程解应用题的一般

4、步骤,经历探求思路、建立方程的过程,使学生进一步体会方程是刻画现实世界的有效数学模型,并从中激发学生的学习兴趣,及时教育学生,要学会用数学的眼光观察生活中的现象,培养自己发现问题与解决问题的能力。 活动注意事项:学生在已有的知识经验的基础上能从实际问题中寻找出等量关系式,这三个问题教师以填空的形式给出设、列,降低了题目的难度,学生能准确的列出三个方程,从而为新授课赢得了时间。问题①如果设花边的宽为x米,那么地毯中央长方形图案的长为 米,宽为 米。根据题意,可得方程 。问题②如果设五个连续整数中的第一个数为x,那么后面四个数依次

5、可表示为 , , , 。根据题意,可得方程 。问题③由勾股定理可知,滑动前梯子底端距墙 m,如果设梯子底端滑动xm,那么滑动后梯子底端距墙 m。根据题意,可得方程 。 第二环节:建立模型,探索新知 活动内容:概括一元二次方程的概念 活动目的:通过观察分析化简后的三个方程的特点,让学生在已经学习的一元一次方程的基础上尝试概括一元二次方程的定义,理解一元二次方程的基本特征及其相关概念,从而培养学生的观察

6、能力、分析概括能力,养成独立思考的良好的行为习惯。 活动注意事项:三个方程化简后,教师可引导学生类比一元一次方程观察这三个的特点,然后进行汇总,归纳,学生容易漏掉二次项系数不为0的要点,教师可给予必要的引导。具体处理方法如下: 由上面三个问题,我们可以得到三个方程: (8-2x)(5-2x)=18 即2x2 - 13x + 11 = 0 x2+(x+1) 2+(x+2) 2=(x+3) 2+(x+4) 2 即x2 - 8x - 20=0 (x+6) 2+72=10 2

7、 即x2 +12 x-15 =0 引导学生观察上述三个方程有什么共同特点?(提示:我们曾经学习了—元一次方程,同学们可以类比着它的要点,看看这些方程有什么特点。) 对学生所说的各个情况进行总结,尤其注意学生容易漏掉的二次项系数不为0的要点,给出一元二次方程的要点和定义:只含有一个未知数x的整式方程,并且都可以化为(a、b、c为常数,a≠0)的形式,这样的方程叫做一元二次方程。 (1)强调三个特征:整式方程;只含一个未知数;未知数的最高次数是2且其系数不为0。 (2)几种不同的表示形式:①ax2+bx+c=0 (a≠0,b≠0,c≠0) ②ax2+bx=0 (a

8、≠0,b≠0,c=0) ③ax2+c=0 (a≠0,b=0,c≠0) ④ax2=0 (a≠0,b=0,c=0) (3)相关概念:一元二次方程的一般形式:ax2+bx+c=0(a,b,c为常数,a不等于0) 一元二次方程的二次项、一次项、常数项分别为:ax2、bx、c 二次项系数为:a 一次项系数为:b 第三环节:巩固应用,形成技能 活动内容: 1、判一判,下列方程哪些是一元二次方程? (1)7x2-6x=0 (2)2x2-5xy+6y=0 (3)2x2-1/3x-1=0 (4)y2/2=0 (5)x2+2x-3=1+x2 (6)

9、ax2+bx+c=0  2、把下列方程化为一元二次方程的形式,并写出它的二次项系数、一次项系数和常数项: 方程 一般形式 二次项系数 一次项系数 常数项 3x2=5x-1 (x+2)(x-1)=6 4-7x2=0 3、想一想:⑴关于x的方程(k-3)x2 + 2x-1=0,当k   时,是一元二次方程. ⑵当m取何值时,方程(m-1)x∣m∣+I+2mx+3=0是关于x的一元二次方程? 活动目的:巩固一元二次方程的定义及其相关概念 活动注意事项:问题1可让学生口答,并且说明是与不是的原因;问题2的一般形式不唯一

10、问题3重点考察一元二次方程的二次项系数不能是0,学生若明确一元二次方程的基本特征,此题不难解决。 第四环节:拓展延伸,层层攀高 活动内容: 1、关于x的方程(k2-1)x2 + 2 (k-1) x + 2k + 2=0,当k 时,是一元二次方程.,当k 时,是一元一次方程. 2、关于x的方程(a2+2a+2)x2+6x-3=0是一元二次方程吗?请说明原因。 3、从前有一天,一个醉汉拿着竹竿进屋,横拿 竖拿都进不去,横着比门框宽4尺,竖着比门框 高2尺,另一个醉汉教他沿着门的两个对角斜着 拿竿,这个醉汉一试,不多不少刚好进去了.你 知道竹竿有多长吗?请根据

11、这一问题列出方程. 4、在感受前面素材及归纳一元二次方程形式特点的基础 上,启发学生编拟一道与自己身边生活有关的应用题,使列出来的方程是一元二次方程,并与同伴交流。 活动目的:继续巩固一元二次方程的定义。通过部分问题的分组讨论,培养学生主动参与、合作交流的意识;让学生经历独立克服困难和运用知识解决问题的成功体验,提高学习数学的自信心。 活动注意事项:问题1、3可让学生独立解决,问题2、4分小组讨论解决时,应该留给学生充分的独立思考的时间,不要让一些思维活跃的学生的回答代替了其他学生的思考,掩盖了其他学生的疑问。小组交流时,教师参与到小组合作学习中,并给予必要的个别指导,选取一个小组的同

12、学公布本组答案,其他小组的同学进行点评。 第五环节:感悟与收获 活动内容:师生相互交流,本节课学了哪些知识?有什么体会?在本节课中,对自己及其他同学们的学习表现满意吗? 活动目的:教师鼓励学生结合本节课的学习,谈自己的收获与感想,教师适当地给予鼓励,培养学生的语言表达能力、概括能力及善于归纳总结良好的学习习惯。 活动注意事项:教师不要事事包办,要大胆放手,给学生一个展现自我的机会,让学生畅所欲言,对于学生的精彩表现要要及时鼓励、肯定。 第六环节:布置作业 课本P45 习题2.1第一题 教学反思: (1)本节课的设计体现了以教师为主导、学生为主体,以知识为载体、以培养学生的思维

13、能力为重点的教学思想。教师以探究任务引导学生自学自悟的方式,提供了学生自主合作探究的舞台,营造了思维驰骋的空间,在经历知识的发现过程中,培养了学生探究、合作、归纳的能力。 (2)在课堂教学设计中,尽量为学生提供“做中学”的时空,不放过任何一个发展学生智力的契机,让学生在“做”的过程中,借助已有的知识和方法主动探索新知识,扩大认知结构,发展能力,完善人格,从而使课堂教学真正落实到学生的发展上。 (3)“乐思方有思泉涌”,在课堂教学中,时时注意营造积极的思维状态,关注学生的思维发展过程,创设民主、宽松、和谐的课堂气氛,让学生畅所欲言,这样学生的创造火花才会不断闪现,个性才能得以发展。

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服