ImageVerifierCode 换一换
格式:DOCX , 页数:20 ,大小:277.69KB ,
资源ID:873778      下载积分:11 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/873778.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【胜****】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【胜****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(成稿机械原理课程设计说明书1铰链式颚式破碎机方案分析.docx)为本站上传会员【胜****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

成稿机械原理课程设计说明书1铰链式颚式破碎机方案分析.docx

1、机械原理课程设计铰链式颚式破碎机目录一机构简介与设计数据3二图解法连杆机构运动分析及动态静力分析5三杆组法颚式破碎机的运动分析及动态静力分析 11四飞轮设计五主要收获 颚式破碎机一、机构简介与设计数据(1)机构简介 颚式破碎机是一种破碎矿石的机械,如图所示,机器经皮带(图中未画)使曲柄2顺时针回转,然后通过构件3,4,5是动颚板6向左摆向固定于机架1上的定额板7时,矿石即被轧碎;当动颚板6向右摆定颚板时,被轧碎的矿石即下落。 由于机器在工作过程中载荷变化很大,将影响曲柄和电动机的匀速运转。为了减小主轴速度的波动和电动机的容量,在O2轴的两端各装一个大小和重量完全相同的飞轮,其中一个兼作皮带轮用

2、。图1.1 六杆铰链式破碎机 图1.2 工艺阻力(2)设计数据设计内容连杆机构的远动分析 符号n2Lo2AL1L2h1h2lABlO4BLBCLo6c单位r/minmm数据170100100094085010001250100011501960连杆机构远动的动态静力分析 飞轮转动惯量的确定 IO6DG3JS3G4JS4G5JS5G6JS6mmNKg m2NKg m2NKg m2NKg m2600500025.520009200099000500.15 2.2 设计要求试比较两个方案进行综合评价。主要比较以下几方面:1. 进行运动分析,画出颚板的角位移、角速度、角加速度随曲柄转角的变化曲线。2.

3、 进行动态静力分析,比较颚板摆动中心运动副反力的大小及方向变化规律,曲柄上的平衡力矩大小及方向变化规律。3. 飞轮转动惯量的大小。二、连杆机构的运动分析:(一)特殊位置(1)曲柄在1位置时,构件2水平时, 以A为圆心,以1250mm为半径画圆,以O4为圆心,以1000mm为半径画圆,交于B点。以B为圆心1150mm为半径画圆, 再以O6 为圆心,以1960mm为半径画圆,在圆O6和圆B的交点为C。据此一位置各构件位置确定。O2O22加速度分析:17.8rad/s= = 和 值的大小: 根据加速度多边形按图3按比例尺量取、数值:= 3.连杆机构的动态静力分析对各受力杆件列力平衡方程和力矩平衡方程

4、杆6 Fry+F56X-F16x=m6a6x F16y-Fry-F56y+G6=m6a6y 对O6取矩 F56xl6x+1/2G6l6x+F56yl6y+1/2Frxl6y=J66的方程Fi6=1/2ao6c*m6=2968.7N Mi6=ao6ct/Lo6c*Js6=165.26N.M Fr16x+Fr*cos(4.96)+Fr56x-Fi6*cos(2.95)=0 Fr16y-Frsin(4.96)+Fi6*sin(2.95)+Fr56y-G6=0Fr*Lcd+1/2Lo6c*G6*sin(4.96)+Fr56x*Lo6c*cos(4.96)-Mi6-Fr56y*Lo6c*sin(4.96

5、)=0杆5 F45x-F65x=m5a5x F65y-F45y+G5=m5a5y对B点取矩 F65xl5y+1/2G5l5x-F65yl5x=J55的方程Fi5=as5*m5=660.9N Mi5=acbt/Lcb*Js5=50.6NMFr45x-Fr56x-Fi5*cos(1.1)=0Fr45y-Fr56y+Fi5sin(1.1)-G5=01/2Fi5*Lbc*sin( -7.26)-Mi5-Fr56y*Lbc*cos(7.260)-Fr56x*Lbc*sin(7.26)-1/2G5*Lbc*cos(7.29)=0 杆4 F14x-F43x=m4a4x F14y-F43y+G4=m4a4y对

6、B取矩 F14xl4x-1/2G4l4x-F14yl4y=J44的方程Fi4=as4*m4=424.9N Mi4=ao4bt/Lo4b*Js4=20.87NMFr14xFr45xFr43xFi4*cos(20.9)=0Fr14yFr45yFr43y+Fi4*sin(20.9)G4=01/2Fi4*Lo4b*sin(35.26)+(Fr45x+Fr43x)*Lo4b*sin(14.36)+Mi4-(Fr45y+Fr43y+1/2G4)*Lo4b*cos(14.36)=0 杆3 -F23x-F43x=m3a3x F23y-F43y+G3=m3a3y对B取矩 F23xl3x+1/2G3l3x-F23

7、yl3y=J33的方程Fi3=as3*m3=709.26N Mi3=aabt/Lab*Js3=570.87NMFr23x+Fr43xFi3*cos(5.11)=0Fr23y+Fr43yG3+Fi3*sin(5.11)=01/2Fi3Lab*cos()+1/2G3*Lab*sin(3.27)-Mi3-Fr43y*Lab*sin(3.27)-Fr43x*Lab*cos(3.27)=0 2的方程Fr12x-Fr23x=0Fr12y-Fr23y-G2=0当曲柄处于180。的时候, 所以通过列矩阵求解 F12y =21230.3N F12x= 1578.42 N F32x=-4684N F32y =17

8、812N F43x=6451N F43y =12970N F14x =-26061N F14y=-5790N F45x = -32915N F45y = 5332N F56x =-33575N F56y=3332 N F16x =-5335N F16y =20434N 三 杆组法颚式破碎机的运动分析及动态静力分析 机构的结构分析六杆铰链式粉碎机拆分为机架和主动件,构件组成的RRR杆组,构件组成的RRR杆组。+(1)调用bark函数对主动件进行运动分析。见表4.1。表4.1形式参数n1n2n3kr1r2gamtwepvpap实值1201r120.00.0twepvpap(2)调用rrrk函数对由

9、构件组成的RRR杆组进行运动分析。见表4.2。表4.2形式参数mn1n2n3k1k2r1r2twepvpap实值142332r34r23twepvpap(3)调用rrrk函数对由构件组成的RRR杆组进行运动分析。见表4.3。表4.3形式参数mn1n2n3k1k2r1r2twepvpap实值136545,r35r56twepvpap(4)程序清单:#include graphics.h#include subk.c#include draw.cmain() static double p202,vp202,ap202; static double t10,w10,e10,del; static

10、double pdraw370,vpdraw370,apdraw370,wdraw370; static int ic; double r12,r23,r34,r35,r56; double pi,dr; int i; FILE *fp; r12=0.1; r34=1.0; r23=1.250; r35=1.15; r56=1.96; p11=0.0; p12=0.0; p41=0.94; p42=-1.0; p61=-1.0; p62=0.85; pi=4.0*atan(1.0); dr=pi/180.0; t1=0.0; w1=-17*pi/3; e1=0.0; del=15; print

11、f(n The Kinematic Parameters of Point6n); printf(No THETA1 t5 w5 e5n); printf( deg rad rad/s rad/s/sn); ic=(int)(360.0/del); for(i=0;i=ic;i+) t1=(-i)*del*dr-90*dr; bark(1,2,0,1,r12,0.0,0.0,t,w,e,p,vp,ap); rrrk(1,4,2,3,3,2,r34,r23,t,w,e,p,vp,ap); rrrk(1,3,6,5,4,5,r35,r56,t,w,e,p,vp,ap); wdrawi=t1/dr;

12、 pdrawi=t5; vpdrawi=w5; apdrawi=e5; if(fp=fopen(六杆运动8888888.txt,w)=NULL) printf(Cant open this file./n); exit(0); for(i=0;i=ic;i+)printf(%12.3f %12.3f %12.3f %12.3fn,wdrawi,pdrawi,vpdrawi,apdrawi);fprintf(fp,%e %e %e %en,wdrawi,pdrawi,vpdrawi,apdrawi); if(i%18)=0)getch(); fclose(fp); getch(); draw1(

13、del,pdraw,vpdraw,apdraw,ic);运算结果:The Kinematic Parameters of Point5THETA1 t5 w5 e5deg rad rad/s rad/s/s-9.00000e+01 -1.63238e+00 -1.37677e-03 -1.01835e+01-1.05000e+02 -1.63348e+00 -1.45454e-01 -9.16482e+00-1.20000e+02 -1.63654e+00 -2.64803e-01 -6.90406e+00-1.35000e+02 -1.64108e+00 -3.45263e-01 -3.98

14、081e+00-1.50000e+02 -1.64647e+00 -3.81662e-01 -1.00778e+00-1.65000e+02 -1.65210e+00 -3.77125e-01 1.51876e+00-1.80000e+02 -1.65741e+00 -3.40696e-01 3.29712e+00-1.95000e+02 -1.66202e+00 -2.84290e-01 4.23741e+00-2.10000e+02 -1.66573e+00 -2.19724e-01 4.43601e+00-2.25000e+02 -1.66849e+00 -1.56345e-01 4.1

15、2137e+00-2.40000e+02 -1.67036e+00 -9.95969e-02 3.58405e+00-2.55000e+02 -1.67146e+00 -5.06328e-02 3.10541e+00-2.70000e+02 -1.67188e+00 -6.91431e-03 2.89782e+00-2.85000e+02 -1.67166e+00 3.64486e-02 3.06340e+00-3.00000e+02 -1.67078e+00 8.48847e-02 3.57078e+00-3.15000e+02 -1.66912e+00 1.42323e-01 4.2474

16、0e+00-3.30000e+02 -1.66655e+00 2.09172e-01 4.79134e+00-3.45000e+02 -1.66295e+00 2.80705e-01 4.81744e+00-3.60000e+02 -1.65832e+00 3.46484e-01 3.95596e+00-3.75000e+02 -1.65286e+00 3.91648e-01 2.00206e+00-3.90000e+02 -1.64698e+00 4.00498e-01 -9.32100e-01-4.05000e+02 -1.64131e+00 3.61788e-01 -4.35539e+0

17、0-4.20000e+02 -1.63658e+00 2.73734e-01 -7.50567e+00-4.35000e+02 -1.63346e+00 1.46198e-01 -9.61223e+00-4.50000e+02 -1.63238e+00 -1.37677e-03 -1.01835e+01五.机构的动态静力分析5.1六杆铰链式颚式破碎机的静力分析(1)调用bark函数对主动件进行运动分析。见表4.1。(2)调用rrrk函数对由构件组成的RRR杆组进行运动分析。见表4.2。(3)调用rrrk函数对由构件组成的RRR杆组进行运动分析。见表4.3。(4)求各构件的质心7、8、9、10点

18、及矿石破碎阻力作用点11点的运动参数。见表5.1表5.5。表5.1 7点运动参数形式参数n1n2n3kr1r2gamtwepvpap实值20720.0r270.0twepvpap表5.2 8点运动参数形式参数n1n2n3kr1r2gamtwepvpap实值40830.0r480.0twepvpap表5.3 9点运动参数形式参数n1n2n3kr1r2gamtwepvpap实值30940.0r390.0twepvpap表5.4 10点运动参数形式参数n1n2n3kr1r2gamtwepvpap实值601050.0r6100.0twepvpap表5.5 11点运动参数形式参数n1n2n3kr1r2g

19、amtwepvpap实值601150.0r6110.0twepvpap(5)调用rrrf对由杆组成的RRR杆组进行静力分析。见表5.6。表5.6形式参数n1n2n3ns1ns2nn1nn2nexfk1k2pvpaptwefr实值3659100111145pvpaptwefr(6)调用rrrf对由杆组成的RRR杆组进行静力分析。见表5.7。表5.7形式参数n1n2n3ns1ns2nn1nn2nexfk1k2pvpaptwefr实值4238730032pvpaptwefr(7)调用barf对主动件进行静力分析。见表5.8。表5.8形式参数n1ns1nn1k1papefrtb实值1121papefr

20、&tb程序清单#include graphics.h#include subk.c#include subf.c#include draw.cmain() static double p202,vp202,ap202,del; static double t10,w10,e10; static double sita1370,fr1draw370,sita2370,fr2draw370,sita3370,fr3draw370,tbdraw370,tb1draw370; static double fr202,fe202; static int ic; double r12,r23,r34,r3

21、5,r56; double r27,r48,r39,r610,r611; int i; double pi,dr; double fr1,bt1,fr4,bt4,fr6,bt6,we1,we2,we3,we4,we5,tb,tb1; FILE*fp; sm1=0.0;sm2=500.0;sm3=200.0;sm4=200.0;sm5=900.0; sj1=0.0;sj2=25.5;sj3=9.0;sj4=9.0;sj5=50.0; r12=0.1; r23=1.25; r34=1.0; r35=1.15;r56=1.96; r27=r23/2; r48=r34/2; r39=r35/2; r6

22、10=r56/2; r611=0.6; pi=4.0*atan(1.0); dr=pi/180.0; w1=-170*2*pi/60; e1=0.0; del=15; p11=0.0; p12=0.0; p41=0.94; p42=-1.0; p61=-1.0; p62=0.85; printf(n The Kineto-static Analysis of a Six-bar Linkasen);printf( NO THETA1 FR1 BT1 FR4 BT4 FR6 BT6 TB TB1n);printf( (deg.) (N) (deg.) (N) (deg.) (N) (deg.)

23、(N.m) (N.m) n); if(fp=fopen(六杆受力8888888.doc,w)=NULL) printf(Cant open this file./n); exit(0); fprintf(fp,n The Kineto-static Analysis of a Six-bar Linkasen);fprintf(fp, NO THETA1 FR1 BT1 FR4 BT4 FR6 BT6 TB TB1n );fprintf(fp, (deg.) (N) (deg.) (N) (deg.) (N) (deg.) (N.m) (N.m) n ); ic=(int)(360.0/del

24、); for(i=0;i=ic;i+) t1=(-i)*del*dr; bark(1,2,0,1,r12,0.0,0.0,t,w,e,p,vp,ap); rrrk(1,4,2,3,3,2,r34,r23,t,w,e,p,vp,ap); rrrk(1,3,6,5,4,5,r35,r56,t,w,e,p,vp,ap); bark(2,0,7,2,0.0,r27,0.0,t,w,e,p,vp,ap); bark(4,0,8,3,0.0,r48,0.0,t,w,e,p,vp,ap); bark(3,0,9,4,0.0,r39,0.0,t,w,e,p,vp,ap); bark(6,0,10,5,0.0,

25、r610,0.0,t,w,e,p,vp,ap); bark(6,0,11,5,0.0,r611,0.0,t,w,e,p,vp,ap); rrrf(3,6,5,9,10,0,11,11,4,5,p,vp,ap,t,w,e,fr); rrrf(4,2,3,8,7,3,0,0,3,2,p,vp,ap,t,w,e,fr); barf(1,1,2,1,p,ap,e,fr,&tb); fr1=sqrt(fr11*fr11+fr12*fr12); bt1=atan2(fr12,fr11); fr4=sqrt(fr41*fr41+fr42*fr42); bt4=atan2(fr42,fr41); fr6=sq

26、rt(fr61*fr61+fr62*fr62); bt6=atan2(fr62,fr61); we1=-(ap11*vp11+(ap12+9.81)*vp12)*sm1-e1*w1*sj1; we2=-(ap71*vp71+(ap72+9.81)*vp72)*sm2-e2*w2*sj2; we3=-(ap81*vp81+(ap82+9.81)*vp82)*sm3-e3*w3*sj3; we4=-(ap91*vp91+(ap92+9.81)*vp92)*sm4-e4*w4*sj4; extf(p,vp,ap,t,w,e,11,fe); we5=-(ap101*vp101+(ap102+9.81)

27、*vp102)*sm5-e5*w5*sj5+fe111*vp111+fe112*vp112; tb1=-(we1+we2+we3+we4+we5)/w1; printf(%3d %7.1f %7.1f %7.1f %7.1f %7.1f %7.1f %7.1f %7.1f %7.1fn,i+1,t1/dr,fr1,bt1/dr,fr4,bt4/dr,fr6,bt6/dr,tb1,tb1);fprintf(fp,%1d %7.1f %7.1f %7.1f %7.1f %7.1f %7.1f %7.1f %7.1f %7.1fn,i+1,t1/dr,fr1,bt1/dr,fr4,bt4/dr,fr

28、6,bt6/dr,tb1,tb1); tbdrawi=tb; tb1drawi=tb1; fr1drawi=fr1;sita1i=bt1; fr2drawi=fr4;sita2i=bt4; fr3drawi=fr4;sita3i=bt4; if(i%16)=0)getch(); fclose(fp); getch(); draw2(del,tbdraw,tb1draw,ic); draw3(del,sita1,fr1draw,sita2,fr2draw,sita3,fr3draw,ic); getch();#includemath.hextf(p,vp,ap,t,w,e,nexf,fe) do

29、uble p202,vp202,ap202,t10,w10,e10,fe202; double pi,dr; pi=4.0*atan(1.0); dr=pi/180.0; if(w50) fenexf1=(-t1/dr-90.0)*(85000.0/182.0)*cos(-t5-pi/2); fenexf2=-(-t1/dr-90.0)*(85000.0/182.0)*sin(-t5-pi/2); elsefenexf1=0;fenexf2=0; 运行结果: The Kineto-static Analysis of a Six-bar LinkaseNO THETA1 FR1 BT1 FR4

30、 BT4 FR6 BT6 TB TB1 (deg.) (N) (deg.) (N) (deg.) (N) (deg.) (N.m) (N.m) The Kineto-static Analysis of a Six-bar Linkase NO THETA1 FR1 BT1 FR4 BT4 FR6 BT6 TB TB1 (deg.) (N) (deg.) (N) (deg.) (N) (deg.) (N.m) (N.m) 1 0.0 4442.5 -157.9 2351.4 10.3 1669.1 5.0 534.3 534.32 -15.0 4901.8 144.8 2892.4 7.9 8

31、99.3 17.6 1038.1 1038.13 -30.0 8299.6 117.0 3106.8 5.1 488.2 138.1 1434.5 1434.54 -45.0 12072.4 106.5 3110.5 1.6 1814.6 171.7 1547.8 1547.85 -60.0 15119.0 101.3 3165.4 -1.1 3120.1 178.1 1271.0 1271.06 -75.0 16826.9 97.9 3539.8 -0.3 4005.1 -179.3 644.2 644.27 -90.0 16909.1 94.8 4392.1 3.7 4247.2 -178

32、.5 -144.6 -144.68 -105.0 3361.2 89.9 12148.1 14.6 9873.8 109.0 -883.8 -883.89 -120.0 11111.1 -79.8 19692.7 16.5 18718.3 95.0 -1407.8 -1407.810 -135.0 25758.8 -80.7 26713.5 16.8 27580.9 89.3 -1626.3 -1626.311 -150.0 40085.4 -81.1 33069.4 16.2 36047.5 86.2 -1559.2 -1559.212 -165.0 53732.5 -81.7 38768.

33、2 15.3 43999.9 84.4 -1292.9 -1292.913 -180.0 66530.2 -82.5 43954.6 14.1 51469.2 83.3 -931.2 -931.214 -195.0 78457.1 -83.7 48874.0 12.8 58577.5 82.9 -565.2 -565.215 -210.0 89592.8 -85.1 53826.3 11.6 65486.0 82.7 -261.0 -261.016 -225.0 100079.8 -86.7 59118.9 10.5 72355.8 82.8 -57.6 -57.617 -240.0 1101

34、02.7 -88.4 65024.0 9.6 79329.5 83.0 32.3 32.318 -255.0 119876.8 -90.2 71745.8 9.1 86530.5 83.1 24.0 24.019 -270.0 129642.7 -91.9 79401.0 8.8 94074.1 83.2 -39.8 -39.820 -285.0 15509.2 -94.2 433.6 137.6 1276.2 -1.6 -205.3 -205.321 -300.0 14401.7 -99.0 487.5 149.1 1486.1 -2.4 -338.7 -338.722 -315.0 125

35、55.3 -104.5 261.9 102.2 1767.2 -2.6 -361.5 -361.523 -330.0 10038.5 -111.8 716.5 25.1 1994.9 -1.8 -227.6 -227.624 -345.0 7059.0 -125.0 1556.8 13.9 2011.8 0.5 80.8 80.825 -360.0 4442.5 -157.9 2351.4 10.3 1669.1 5.0 534.3 534.3 图5.1 六杆机构曲柄上的平衡力矩的变化规律四飞轮设计由于图解法 采用计算机绘图(Solidworks),所以误差较小。与解析法求得相接近。用Exce

36、l绘制力矩图,求功计算最大盈亏功。C点的角速度与角加速度和曲柄的转动角度的关系数据表: 0-15-30-45-60-75-90-105-120-135534.31038.11434.51547.81271.0644.2-144.6-883.8-1407.8-1626。3.-150-165-180-195-210-225-240-255-270-285-1559.2-1292.9-931.2-565.2-261.0-57.632.224.0-39.8-205.3-300-315-330-345-360250260270280290-338.7-361.5-227.680.8534.3-956.9-461.527.3-475.3933.6300310320330340350360-1310.6-1561.6-1658.2-1596.8-1393.7-1081.5-706.6根据盈亏功的原理,求得各盈亏功值,并作能量指示图。以曲柄的平均驱动力矩为分界线,求出各区段的盈亏功值如下:W1=1867.25Nm W2=-2010.03Nm W3=104.90Nm W4=-180.90Nm W5=218.86Nm

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服