ImageVerifierCode 换一换
格式:DOC , 页数:6 ,大小:197.50KB ,
资源ID:8718731      下载积分:10 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/8718731.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(反思小结--理清知识-体会解决数学问题的思路与方法..doc)为本站上传会员【仙人****88】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

反思小结--理清知识-体会解决数学问题的思路与方法..doc

1、 三角形全等的判定(一) 教学目标 1.构建探索三角形全等条件的思路,体会研究几何问题的方法. 2.探索并理解“边边边”判定方法,体验利用操作、归纳获得数学结论的过程. 3.会用“边边边”判定方法证 明三角形全等.会用尺规作一个角等于已知角,了解作图的依据. 教学重点: 构建探索三角形全等条件的思路,理解并运用“边边边”判定方法. 教学难点:1.构建探索三角形全等条件的思路。 2.用尺规作一个角等于已知角 教学准备:多媒体课件、 两块全等的三角形纸板、 直尺、 圆规 、 学案等. 教学过程: 一、复习旧知,尝试解决生

2、活问题,初识“全等判定”,构建探索思路 1.请你思考后回答:什么叫做全等三角形? 根据这个定义,你知道的全等三角形有哪些性质?你怎样去判定两个三角形全等? 师生活动:教师根据学生回答,在黑板上用符号语言表示这一判定方法. 在△ABC和△A′B′C′中, ∵ ∴ △ABC≌△A′B′C′ 2.尝试应用:小明家的衣橱上镶有两块全等的三角形玻璃装饰物,其中一块被打碎了,妈妈让小明到玻璃店配一块回来,请你说说小明该怎么办?并说说这样做的依据是什么? 师生活动:学生先在小组内交流,再在全班展示结果. 3.请你

3、继续思考:是否一定需要六个条件才能判定两个三角形全等呢?能否减少个三角形全等的判定?你想从几个条件开始研究? 师生活动:学生畅说欲言,交换,确定先从“一个条件”开始,不行就两个“两个条件”,再不行就“三个条件”……的顺序来探究三角形全等的条件。 二、动手操作,感知由“一个条件”“两个条件”不能确定两个三角形全等 活动1.请你观察手中的一副三角尺,思考后回答:只给一个条件相等的两个三角形一定全等吗? 师生活动: 学生独立观察、比较后,再个人展示,有不同想法补充说明,发现:有一条边或一个角相等的两个三角形不一定全等.一起归纳得出: 只有一个条件对应相等的两个三角形不一定

4、全等。 活动二:那么我们现在给出两个条件分别相等,你可以观察手中的三角尺,也可以依据条件在学案上画图,思考后回答,有两个条件分别相等的两个三角形全等吗? 条件举例: ①三角形两内角分别为30°和60°. ②三角形两条边分别为4cm、6cm. ③三角形一内角为30°,一条边为6cm. 师生活动:生先独立思考,按要求动手操作,有结果后在组内交流,然后后派代表在全班举例说明你们讨论的结果.最后共同归纳结果: 有两个条件对应相等的两个三角形也不一定全等。 三、

5、类比探究,尺规作图,理解“SSS”判定方法 问题:现在给出三个条件分别相等,来探究这样的两个三角形一定全等吗? 同学们根据下面的问题探究: 1.思考并回答:根据前面的探究,你能说出三个条件分别相等有几种可能的情况吗? 师生活动:学生先组内讨论、再组间相互补充得到有四种情况,即:三条边、三个内角、两边一角、两角一边. 我们先从最基本的同类元素开始探究,三个角或三条边分别相等的情况. 2.一起来观察:用你们手中的三角尺和老师手中的三角尺,你们很快发现三个角分别相等的两个三角形不一定全等.下面我们再来研究三条边分别相等的情况(其他几

6、种情况以后再研究) 3. 动手跟我画:先任意画一个△ABC,再画出一个三角形A′B′C′,使AB=A′B′、AC=A′C′、BC=B′C′.将画好的△A′B′C′剪下来,放到△ABC上,看看他们全等吗? 师生活动:教师演示画图过程,学生跟老师一起用尺规作图,画完后剪下其中一个,与另一个叠放比较,发现他们全等. 4.我善于归纳:作图的结果反映了怎样的结论?你能用文字语言和数学符号语言概括这个结论吗? 师生活动:学生先尝试归纳,然后小组内交流,再全班展示,师板书. 三边对应相等的两个三角形全等,简写为“边边边”或“SSS”

7、. A B C D 这反映了一个基本事实,它用符号语言表示为: 在△ABC和△A′B′C′中, ∴ △ABC≌△A′B′C′ 5.我思故我用:这个基本事实能帮助我们解决什么问题? (1)问题2中小明家的玻璃问题,你有更简单的方法了吗? (2)前面做过的实验,用三根木条能钉成一个固定的三角形木架,你能解释其中的道理吗? 师生活动:问题比较简单,学生独立思考后,举手回答,其他同学补充。

8、 四、应用“SSS”判定方法,解决问题,尝试演绎推理. 例A B C D A B C D . 如图,△ABC是一个钢架,AB=AC,AD是连结点A与BC中点D的支架.求证:△ABD≌△ACD. 变式:判断∠BAD的∠CAD数量关系, 并证明之. 师生活动:师生共同分析解题思路,要证△ABD≌△ACD,可以看这两个三角形的三条边是否对应相等.注意隐含条件的挖掘和必要条件的证明.师给出规范的板书: 证明:∵D是BC的中点,∴BD=DC, 在△ABD和△ACD,

9、 ∴△ABD≌△ACD(SSS). 我来想,我来画:您能用直尺和圆规做一个角等于已知角吗? 师生活动:师生分别画出一个任意角,教师板书已知和求作的内容,学生尝试自己画图,如果没有思路,教师进一步提示:将已知角放在一个三角形中,求作的角画在与这个三角形全等的三角形中.学生进一步解答(可能会出现两种方法).学生明白作图的依据后,自己动手作图. 已知∠AOB,求作:∠=∠AOB. C C′ O A B D O′ A′ B′ D′ 作法:1、以点O为圆心,任意

10、长为半径画弧,分别交OA,OB于点C、D; 2、画一条射线,以点为圆心,OC长为半径画弧,交 于点; 3、以点为圆心,CD长为半径画弧,与第2步中所画的弧交于 点; 4、过点画射线, 则∠=∠AOB 五.反思小结 ,理清知识,体会解决数学问题的思路与方法. 请同学们谈一谈这节课的收获和体会?分享、补充、完善 一个基本事实:边边边——判定三角形全等——解决实际问题 两个方法:探究事实的方法——画图 猜想 分类 归纳等 解决几何问题的方法——证明两角相等→转化→证明角所在的

11、 两个三角形全等 温馨提醒:证明三角形全等的步骤一定要规范 六.达标测评(在学案上独立完成,师展示答案,对手同学互相评价) 1练习:已知:如图1 ,AC=FE,AD=FB,BC=DE 求证:△ABC≌△FDE 2.已知AC=FE,BC=DE,点A,D,B,F在一条直线上,AD=FB(如图),要用“边边边”证明△ABC ≌△ FDE,除了已知中的AC=FE,BC=DE以外,还应该有什么条件?怎样才能得到这个条件? 3.(昆明·中考)如图,点B,D,C,F在一条直线上,且BC=FD,AB=EF. (1)请你只添加一个条件(不再加辅助线), 使△ABC≌△EFD,你添加的条件是 ; (2)添加了条件后,证明△ABC≌△EFD. 七.布置作业: 必做题:教科书习题12.2第1、9 题;   选做题:如图,△ABC 和△EFD 中,AB =EF, AC =ED,点B,D,C,F 在一条直线上. (1)添加一个条件,由“SSS”可判定△ABC≌△EFD; (2)在(1)的基础上, 求证:AB∥EF.

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服