ImageVerifierCode 换一换
格式:DOC , 页数:5 ,大小:38KB ,
资源ID:8657684      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
图形码:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/8657684.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请。


权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4009-655-100;投诉/维权电话:18658249818。

注意事项

本文(AD9852与FPGA.doc)为本站上传会员【s4****5z】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

AD9852与FPGA.doc

1、摘 要:本文介绍了直接数字频率合成(DDS)芯片AD9852与可编程门阵列(FPGA)相结合采用数字方法实现中频线性相位调制(PM)及试验结果。     关键词:数字信号处理;直接数字频率合成;线性调相;可编程门阵列 一、引  言   随着数字信号处理和集成电路技术的发展,直接数字频率合成(DDS)应用也越来越广泛。DDS具有相位和频率分辨率高、稳定度好、频率转换时间短、输出相位连续、可以实现多种数字与模拟调制的优点,而可编程门阵列(FPGA)具有集成度高、通用性好、设计灵活、编程方便、可以实现芯片的动态重构等特点,因此可以快速地完成复杂的数字系统。由于模拟调相方法具有生产性差、调

2、试不方便、调制度控制不精确等缺点,因此采用数字方法实现各种模拟调制也越来越普遍。现在许多DDS芯片只直接提供了实现多种数字调制的功能,实现起来比较简单,而要实现模拟线性调制具有一定的难度。因此本文介绍了一种采用AD公司高性能DDS芯片AD9852和FPGA结合用全数字方法直接在70 MHz中频上实现正弦侧音线性相位调制(PM)的方法。 二、实现原理    正弦波线性调相(PM)信号的表达式为      式中 ωc为载波角频率;       βPM为调制指数;       ωm为调制信号角频率。     它的抽样式可表示如下: 式中 T为抽样时钟周期;       n为整

3、数;      βPM为调制度;       由上式可见,首先把正弦侧音信号的抽样值通过调制度控制后直接去改变载波抽样信号的相位,再通过查找表把相位信息转换成幅度信息,最后通过一个DAC变换就可输出正弦波线性调相信号,但须满足载波信号与侧音信号信号的抽样时钟保持严格一致,输出才是一个准确的线性调相信号。   在用数字方法具体实现线性调相时,有内调制和外调制2种实现方式。内调制时,用调制信号改变载波频率中心频率控制字(Δφ)的值,在控制时序的作用下每一个载波抽样周期频率控制字只改变一次,然后频率控制字又改变为中心频率对应的控制字,内调制实现原理如图1所示。外调制时,用调制信号通过加法器

4、直接改变载波抽样信号的相位,外调制原理如图2所示。   本文主要介绍多正弦侧音的线性调相。有N个正弦侧音的线性调相(PM)信号和抽样表达式如下: 式中各符号的含义与单侧音时相同。由式可见,要完成多路侧音信号的线性调相,只需把多路侧音信号分别产生,进行调制度控制后,通过相加再去改变载波信号的相位。   在本方案中,中频频率为70 MHz,2路正弦侧音信号,具体实现时采用DDSAD9852来产生载波相位、调相、查找表和进行DA变换,采用FPGA产生正弦侧音信号的相位、正弦查找表、调制度控制以及AD9852控制时序等功能。 三、实现方法 1.AD9852组成及调相原理   A

5、D9852是由AD公司生产的高性能DDS芯片,主要由DDS核、寄存器、DAC、比较器、I/O接口等电路组成。它的内部工作频率最高可达300 MHz,最高输出频率达150 MHz,能够实现多种调制,如FM、AM、PM、FSK、PSK、ASK等,同时内部还有一个420倍的可编程时钟倍频锁相电路,可以用较低的参考频率产生出较高的输出频率,同时它的控制接口也很灵活,有并行和串行方式可供选择,并行接口最高速率可达100 MHz。   由于AD9852内部时钟频率较高,又受到AD9852接口速率的限制,采用内调制时AD9852的时序不易控制。因此本方案采用外调制的办法,具体实现方法为:在一定的时序的控制

6、下,把FPGA产生的侧音抽样信号通过AD9852的并行总线接口直接写入14 bit相位偏移寄存器,在内部时钟的作用下,同步改变载波的相位。     (1)载波信号的产生   载波信号采用DDS原理用AD9852产生,DDS的原理框图如图3所示。     频率控制字ΔФ、系统时钟Fclk、相位累加器位数N、输出频率Fout满足如下关系: 由于DDS的采样特性以及DAC的非线性,DDS系统的输出中含有假信号干扰和杂散,这也是DDS应用的一个缺点,但是只要合理地选择DDS原理中的几个参数,可以减小假信号干扰和杂散,使其分布合理,便于通过滤波器滤出干扰信号。因为AD9852的N=

7、48、Fout=70 MHz固定不变,而ΔФ与系统时钟Fclk相关,因此实际就是对系统时钟Fclk的合理选择,下面就重点讨论Fclk的选择原则。     1)混叠干扰   由于DDS是一个采样系统,因此满足奈奎斯特采样定理Fout≤0.5Fclk,且在nFclk±Fout(n为整数)处有干扰频率存在,干扰频率离中心频率越远,干扰频率的幅度就越小,便于滤波器滤除。在实际应用中输出频率一般不应超过时钟频率的40%,因此本方案选用280 MHz的参考时钟来产生70 MHz的载波信号,奈奎斯特带宽为0~140 MHz。   混叠频率分量为:210 MHz,350 MHz,490 MHz,630

8、MHz…   在奈奎斯特带宽以内没有混叠信号存在,离有用信号70 MHz也较远,通过一个低通滤波器可以滤出奈奎斯特带宽以外的混叠信号。     2)输出杂散   影响DDS输出杂散主要有2个因素:累加器的进位误差和相位截断误差。   相位累加器进位误差是由于累加器溢出时存在剩余量,累加器溢出时不能回到初始状态,当ΔФ=2L(L=0,1…N-1)时,没有进位误差。由于相位累加器只有一部分送入查找表,因此可能存在相位截断误差,当   (GCD(X,Y)表示X与Y的最大公约数)时,没有相位截断误差,否则会在输出信号中产生杂散。   基于上述原因,当参考时钟为280 MHz、输出频率为

9、70 MHz时,AD9852相位累加器位数N=48,频率控制字查找表位数L=17,满足公式: 同时也满足公式ΔФ=2L,因此理论上不存在累加器进位和相位截断误差。   综上所述,当输出载波频率为70 MHz时,选用280 MHz的参考时钟,能够达到很好的效果:混叠干扰较小,没有进位和截断误差,输出频谱稳定。280MHz的参考时钟通过AD9852的时钟倍频锁相电路对外部参考时钟倍频来完成。 2.FPGA电路的实现     (1)侧音信号的产生   侧音信号用FPGA采用DDS原理来产生,由一个频率控制字、相位累加器、查找表等组成,为避免侧音信号相位的抖动,在设计时需要认真对参考时钟

10、相位增量(频率控制字),以及累加器和ROM的位数进行选取,选用没有进位和截断误差的参数,并尽可能增大Fclk/Fout的值。在用FPGA实现时,还需考虑实现的难易以及占用资源的大小等方面综合考虑,使设计尽量简单。如果在某些频点上不易满足上述要求,会引起输出相位的抖动。在本方案中侧音信号相位累加器N=32,参考频率Fclk=20 MHz,频率控制字由相应的侧音频率决定。   (2)调制度的控制   调制度控制采用乘法器与寄存器来实现,寄存器存放调制度控制数据,根据调制度需要控制的精度、范围和整个系统工作速率综合考虑乘法器和寄存器的位数,在本方案中调制度控制精度为0.01rad,范围为0~1

11、.5 rad,因此采用了一个8 bit的寄存器,共有256个控制点,完全满足控制需求。实现时把调制信号与寄存器的值直接相乘,进行校正后把数据送给AD9852调相。如果有多路侧音信号存在,先分别进行调制度控制后再通过数字加法器相加把数据送给AD9852调相。进行调制度控制(两路侧音)的原理框图如图4所示。     (3)AD9852控制时序     时序设计在整个设计过程中起着非常关键的作用,为满足实时调相的要求,这里采用并行接口对AD9852进行控制,它的最高速率可达100 MHz。由于受AD9852接口最高速率的限制,因此侧音信号的采样速率比载波采样速率低,此时调制在载波上的不是一个

12、严格意义上的正弦波,而是一个台阶逼近的正弦波,所以会引入一些谐波分量,但是只要速率相差控制在一定的范围内,谐波分量比较小并可以控制在需要的范围内,产生需要的线性调相信号。因为载波采样速率与侧音信号的采样速率不相等,因此可能会出现相位关系的不确定性,为了解决这一问题,必须使采样时钟相关,载波数据与写入AD9852的调制数据严格在同一时钟沿变换,即满足载波抽样频率是AD9852更新时钟频率的整数倍。 四、试验结果   在试验中,通过本方案实现了两路正弦侧音信号在AD9852上直接输出70 MHz的中频线性调相信号,实测频谱如图5所示。实测结果表明:已调信号频谱、调制度、交调均与理论基本一致,实现了调制度的精确控制,完全满足技术指标要求,在实际应用中有一定的参考价值。   五、结束语   由于受器件的限制,载波的抽样频率与侧音的抽样频率相差较大,因此输出频谱含有较多的谐波分量;AD9852内部采用了时钟倍频器,相噪有所增加,以后还需在这两个方面进行改进。 参考文献 [1] AD公司.A Technical Tutorial On Digital Signal Synthesis[S].1999. [2] AD公司.AD9852器件手册[S].1999.

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服