ImageVerifierCode 换一换
格式:DOC , 页数:7 ,大小:3.05MB ,
资源ID:8624773      下载积分:10 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/8624773.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(构造函数利用导数解决函数问题.doc)为本站上传会员【pc****0】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

构造函数利用导数解决函数问题.doc

1、 构造函数解决不等式问题 例:[2011·辽宁卷]函数f(x)的定义域为R,f(-1)=2,对任意x∈R,f′(x)>2, 则f(x)>2x+4的解集为(  ) A.(-1,1) B.(-1,+∞)C.(-∞,-1) D.(-∞,+∞) 【解析】构造函数G(x)=f(x)-2x-4,所以G′(x)=f′(x)-2,由于对任意x∈R,f’(x)>2, 所以G′(x)=f′(x)-2>0恒成立,所以G(x)=f(x)-2x-4是R上的增函数, 又由于G(-1)=f(-1)-2×(-1)-4=0,所以G(x)=f(x)-2x-4>0, 即f(x

2、)>2x+4的解集为(-1,+∞),故选B. 训练: 1.已知函数的图象关于y轴对称,且当成 立,,,则a,b,c的大小关系是 ( ) A. B. C. D. 解:因为函数关于轴对称,所以函数为奇函数.因为,所以当时,,函数单调递减,当时,函数单调递减.因为,,,所以,所以,选A. 2. 已知为上的可导函数,且,均有,则有 A., B., C., D., 解:构造函数则, 因为均有并且,所以,故函数在R上单调递减,所以,即 也就是,故选D. 6. 已知函数满足,且的导函数,则的解集为( )A. B. C. D. 解:构造新函数

3、 则, ,对任意,有,即函数在R上单调递减,则的解集为,即的解集为,选D. 3.[2013·绥化一模] 已知函数y=f(x-1)的图象关于点(1,0)对称,且当x∈(-∞,0)时,f(x)+xf′(x)<0成立(其中f′(x)是f(x)的导函数),若a=(30.3)·f(30.3), b=(logπ3)·f(logπ3),c=·f,则a,b,c的大小关系是(  ) A.a>b>c B.c>a>b C.c>b>a D.a>c>b 解:因为函数y=f(x-1)的图象关于点(1,0)对称,所以f(x)关于(0,0)中心对称为奇函数,所以函数g(x)=xf(x)为偶函数.又当x∈(-

4、∞,0)时,f(x)+xf′(x)<0成立,故g(x)=xf(x)在(-∞,0)上为减函数.由偶函数的性质得函数xf(x)在(0,+∞)上为增函数, 又>30.3>logπ3>0,所以c>a>b. 例:巳知函数f(x)=ax2-bx-1nx,其中a,b∈R。(I)当a=3,b=-1时,求函数f(x)的最小值;(Ⅱ)若曲线y=f(x)在点(e,f(e))处的切线方程为2x-3y-e=0(e=2.71828…为自然对数的底数),求a,b的值; (Ⅲ)当a>0,且a为常数时,若函数h(x)=x[f(x)+1nx]对任意的x1>x2≥4,总有成立,试用a表示出b的取值范围; 【知识点】导数的综

5、合应用 解:因为,所以, 令,所以f(x)在上单调递减,在上单调递增, 则f(x)在处取得最小值为; (Ⅱ)因为①, 又因为切点(e,f(e))在直线2x-3y-e=0上,所以切点为, 所以②,联立①②解得. (Ⅲ)由题意,对于任意,总有成立, 令,则函数p(x)在x∈[4,+∞)上单调递增,所以上恒成立.构造函数 ,则, 所以F(x)在上单调递减,在上单调递增. (1)当时,F(x)在上单调递减,在上单调递增. 所以F(x)的最小值为; (2)当时F(x)在(4,+∞)上单调递增,,综上,当时,当时, 【思路点拨】本题主要考查的是利用导数求函数的最值及利用导数研究

6、曲线的切线,利用导数求最值一般先判断函数的单调性,再结合单调性确定最值位置,对于由不等式恒成立求参数参数范围问题通常转化为函数的最值问题解答. 变式练习: 1.函数(Ⅰ)当时,求曲线在点处的切线方程;(Ⅱ)当时,若在区间上的最小值为-2,求的取值范围; (Ⅲ)若对任意,且恒成立,求的取值范围. 解:(Ⅰ)当时,.………2分 因为.所以切线方程是 …………4分 (Ⅱ)函数的定义域是. ………………5分 当时, 令,即, 所以或. ……………………7分 当,即时,在[1,e]上单调递增, 所以在[1,e]上的最小值是; 当时,在[1,e]上的最小值是,不

7、合题意; 当时,在(1,e)上单调递减, 所以在[1,e]上的最小值是,不合题意………………9分 (Ⅲ)设,则, 只要在上单调递增即可.…………………………10分 而 当时,,此时在上单调递增;……………………11分 当时,只需在上恒成立,因为,只要, 则需要,对于函数,过定点(0,1),对称轴,只需,即. 综上. ………………………14分 2. 函数,(1)求函数的极值;(2)讨论的零点的个数;(3)对恒成立,求的取值范围。 解: 3.已知函数(1)若直线y=x+m与函数的图像相切,求实数m的值。(2)证明函数与曲线有唯一的交点。(3)设,比较的大小,并说明理由

8、 4. 设函数f(x)=2ln x+mx-x2. (1)若曲线y=f(x)在点(1,f(1))处的切线方程为y=2x+n,求实数m,n的值; (2)若m>-4,求证:当a>b>0时,有>-2; (3)若函数f(x)有两个零点x1,x2(x1b>0,设函数g(

9、x)=f(x)+2x2=x2+mx+2ln x, 则有g’(x)=2x+m+. 由于x>0,且m>-4, ∴g′(x)=2x+m+≥2+m=4+m>0,故g(x)在(0,+∞)上递增, ∴g(a)>g(b), ∴f(a)+2a2>f(b)+2b2,∴ (3)由x1,x2(x1x1>0,则有t∈(0,1). 进而可得 设函数 则有故函数h(t)在区间(0,1)上递减,从而可得h(t)>h(1)=0. 于是有而<0, 因此f′(x0)<0.

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服