ImageVerifierCode 换一换
格式:DOC , 页数:15 ,大小:1.42MB ,
资源ID:8538796      下载积分:10 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/8538796.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(2018年北京市海淀区初三一模数学试卷.doc)为本站上传会员【pc****0】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

2018年北京市海淀区初三一模数学试卷.doc

1、w W w .x K b 1.c o M 海淀区九年级第二学期期中练习 数 学 2018.5 学校 姓名 成绩 考 生 须 知 1.本试卷共8页,共三道大题,28道小题,满分100分。考试时间120分钟。 2.在试卷和答题卡上准确填写学校名称、班级和准考证号。 3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。 4.在答题卡上,选择题、作图题用2B铅笔作答,其他试题用黑色字迹签字笔作答。 5.考试结束,将本试卷

2、答题卡和草稿纸一并交回。 一、选择题(本题共16分,每小题2分) 第1-8题均有四个选项,符合题意的选项只有一个. 1.用三角板作的边上的高,下列三角板的摆放位置正确的是 A B C D 2.图1是数学家皮亚特·海恩(Piet Hein)发明的索玛立方块,它由四个及四个以内大小相同的立方体以面相连接构成的不规则形状组件组成.图2不可能是下面哪个组件的视图 图2 图1 B

3、D C A 3.若正多边形的一个外角是120°,则该正多边形的边数是 A.6 B. 5 C. 4 D.3 4.下列图形中,既是中心对称图形,也是轴对称图形的是 A.赵爽弦图 B.科克曲线 C.河图幻方 D.谢尔宾斯基三角形 5.如果,那么代数式的值是 A.2 B. C.1 D. 6.实数a,b,c,d在数轴上的对应点的位置如图所示. 若,则下列结论中正确的是 A. B.

4、C. D. 7.在线教育使学生足不出户也能连接全球优秀的教育资源. 下面的统计图反映了我国在线教育用户规模的变化情况. (以上数据摘自《2017年中国在线少儿英语教育白皮书》) 根据统计图提供的信息,下列推断一定不合理的是 A.2015年12月至2017年6月,我国在线教育用户规模逐渐上升 B.2015年12月至2017年6月,我国手机在线教育课程用户规模占在线教育用户规模的比例持续上升 C.2015年12月至2017年6月,我国手机在线教育课程用户规模的平均值超过7000万 D.2017年6月,我国手机在线教育课程用户规模超过在线教育用户规模的70% 8.如

5、图1,矩形的一条边长为,周长的一半为.定义为这个矩形的坐标. 如图2,在平面直角坐标系中,直线将第一象限划分成4个区域. 已知矩形1的坐标的对应点落在如图所示的双曲线上,矩形2的坐标的对应点落在区域④中. ① ④ ② ③ 图1 图2 则下面叙述中正确的是 A. 点的横坐标有可能大于3 B. 矩形1是正方形时,点位于区域② C. 当点沿双曲线向上移动时,矩形1的面积减小 D. 当点位于区域①时,矩形1可能和矩形2全等 二

6、填空题(本题共16分,每小题2分) 9. 从5张上面分别写着“加”“油”“向”“未”“来”这5个字的卡片(大小、形状完全相同)中随机抽取一张,则这张卡片上面恰好写着“加”字的概率是 . 10.我国计划2023年建成全球低轨卫星星座——鸿雁星座系统,该系统将为手机网络用户提供无死角全覆盖的网络服务. 2017年12月,我国手机网民规模已达753 000 000,将753 000 000用科学记数法表示为 . 11.如图,,若,,,则= . 12.写出一个解为1的分式方程: . 13

7、.京张高铁是2022年北京冬奥会的重要交通基础设施,考虑到不同路段的特殊情况,将根据不同的运行区间设置不同的时速.其中,北京北站到清河段全长11千米,分为地下清华园隧道和地上区间两部分,运行速度分别设计为80千米/小时和120千米/小时.按此运行速度,地下隧道运行时间比地上大约多2分钟(小时),求清华园隧道全长为多少千米.设清华园隧道全长为x千米,依题意,可列方程为__________. 14.如图,四边形ABCD是平行四边形,⊙O经过点A,C,D,与BC交于点E,连接AE,若∠D = 72°,则∠BAE = °. 15.定义:圆

8、中有公共端点的两条弦组成的折线称为圆的一条折弦. 阿基米德折弦定理:如图1,和组成圆的折弦,,是弧的中点,于,则. 如图2,△中,,,,是上一点,,作交△的外接圆于,连接,则=________°. 16.下面是“过圆上一点作圆的切线”的尺规作图过程. 已知:⊙O和⊙O上一点P. 求作:⊙O的切线MN,使MN经过点P. 作法:如图, (1)作射线OP; (2)以点P为圆心,小于OP的长为半径作弧交射线OP于A,B两点; (3)分别以点A,B为圆心,以大于长为 半径作弧,两弧交于M,N两

9、点; (4)作直线MN. 则MN就是所求作的⊙O的切线. 请回答:该尺规作图的依据是 . 三、解答题(本题共68分,第17~22题,每小题5分;第23~26小题,每小题6分;第27~28小题,每小题7分) 解答应写出文字说明、演算步骤或证明过程. 17.计算:. 18.解不等式组: 19.如图,△中,,为的中点,连接,过点作的平行线,求证:平分. 20.关于的一元二次方程. (1)若是

10、方程的一个实数根,求的值; (2)若为负数,判断方程根的情况. 21.如图,□的对角线相交于点,且AE∥BD,BE∥AC,OE = CD. (1)求证:四边形ABCD是菱形; (2)若AD = 2,则当四边形ABCD的形状是_______________时,四边形的面积取得最大值是_________________. 22.在平面直角坐标系中,已知点(2,2),(-1,2),函数. (1)当函数的图象经过点时,求的值并画出直线. (2)若,两点中恰有一个点的坐标(,)满足不等式组(>0),求的取值范围. 23.如图

11、是的直径,弦于点,过点作的切线交的延长线于点. (1)已知,求的大小(用含的式子表示); (2)取的中点,连接,请补全图形;若,,求的半径. 24. 某校九年级八个班共有280名学生,男女生人数大致相同,调查小组为调查学生的体质健康水平,开展了一次调查研究,请将下面的过程补全. 收集数据 调查小组计划选取40名学生的体质健康测试成绩作为样本,下面的取样方法中,合理的是___________(填字母); A.抽取九年级1班、2班各20名学生的体质健康测试成绩组成样本 B.抽取各班体育成绩较好的学生共40名学生的体质健康测试成绩组成样本

12、 C.从年级中按学号随机选取男女生各20名学生学生的体质健康测试成绩组成样本 整理、描述数据 抽样方法确定后,调查小组获得了40名学生的体质健康测试成绩如下: 77 83 80 64 86 90 75 92 83 81 85 86 88 62 65 86 97 96 82 73 86 84 89 86 92 73 57 77 87 82 91 81 86 71 53 72 90 76 68 78 整理数据,如下表所示: 2018年九年级部分学生学生的体质健康测试成绩统计表 1 1 2 2 4 5 5 2

13、 分析数据、得出结论 调查小组将统计后的数据与去年同期九年级的学生的体质健康测试成绩(直方图)进行了对比, 你能从中得到的结论是_____________,你的理由是________________________________. 体育老师计划根据2018年的统计数据安排75分以下的同学参加体质加强训练项目,则全年级约有________名同学参加此项目. 25.在研究反比例函数的图象与性质时,我们对函数解析式进行了深入分析. 首先,确定自变量的取值范围是全体非零实数,因此函数图象会被轴分成两部分;其次,分析解析式,得到随的变化趋势:当时,随着值的增大,的值减小

14、且逐渐接近于零,随着值的减小,的值会越来越大,由此,可以大致画出在时的部分图象,如图1所示: 利用同样的方法,我们可以研究函数的图象与性质. 通过分析解析式画出部分函数图象如图2所示. (1)请沿此思路在图2中完善函数图象的草图并标出此函数图象上横坐标为0的点;(画出网格区域内的部分即可) (2)观察图象,写出该函数的一条性质:____________________; (3)若关于的方程有两个不相等的实数根,结合图象,直接写出实数的取值范围:___________________________. 26.在平面直角坐标系xOy中,已知抛物线的顶点在 x轴上,,()

15、是此抛物线上的两点. (1)若, ①当时,求,的值; ②将抛物线沿轴平移,使得它与轴的两个交点间的距离为4,试描述出这一变化过程; (2)若存在实数,使得,且成立,则的取值范围是 . 27.如图,已知,点为射线上的一个动点,过点作,交于点,点在内,且满足,. (1)当时,求的长; (2)在点的运动过程中,请判断是否存在一个定点,使得的值不变?并证明你的判断. 28.在平面直角坐标系中,对于点和,给出如下定义:若上存在一点不与重合,使点关于直线的对称点在上,则称为的反射点.下图为的反射点的示意图. (1)已知点的坐标为,的半径为,

16、 ①在点,,中,的反射点是____________; ②点在直线上,若为的反射点,求点的横坐标的取值范围; (2) 的圆心在轴上,半径为,轴上存在点是的反射点,直接写出圆心的横坐标的取值范围. 海淀区九年级第二学期期中练习 数学参考答案及评分标准 2018.5 一、选择题(本题共16分,每小题2分) 1 2 3 4 5 6 7 8 A C D B A D B D 二、填空题(本题共16分,每小题2分) 9. 10. 11.

17、 12.(答案不唯一) 13. 14. 15. 16.与一条线段两个端点距离相等的点,在这条线段的垂直平分线上;经过半径的外端并且垂直于这条半径的直线是圆的切线;两点确定一条直线. 三、解答题(本题共68分,第17~22题,每小题5分;第23~26小题,每小题6分;第27~28小题,每小题7分) 17. 解:原式= ………………4分 =.

18、 ………………5分 18. 解: 解不等式①,得. ………………2分 解不等式②,得. ………………4分 所以 原不等式组的解集为. ………………5分 19. 证明:∵,为的中点, ∴. ∴. ………………2分 ∵,

19、∴. ………………3分 ∴. ∴平分. ………………5分 20.解:(1)∵是方程的一个实数根, ∴. ………………1分 ∴.

20、 ………………3分 (2). ∵, ∴. ∴. ………………4分 ∴此方程有两个不相等的实数根. ………………5分 21.(1)证明:∵,, ∴四边形是平行四边形. ………………1分 ∵四边形是平行四边形, ∴.

21、 ∵, ∴. ∴平行四边形是矩形. ………………2分 ∴. ∴. ∴平行四边形是菱形. ………………3分 (2) 正方形; ………………4分 2.

22、 ………………5分 22.解:(1)∵函数的图象经过点, ∴,即. ………………1分 图象如图所示. ………………2分 (2)当点满足(>0)时, 解不等式组得. ………………3分 当点满足(>0)时, 解不等式组得. ………………4分 ∵两点中恰有一个点的坐标满足(>0), ∴的取值范围是:,或.

23、 ………………5分 23.解:(1)连接,. ∵,是的直径, ∴. ∵,, ∴. ………………1分 ∵为的切线, ∴. ∴. ∴. . ………………2分 (2)图形如图所示.连接. ∵为的直径, ∴为中点, . ∵为的中点, ∴,. ………………3分 ∵, ∴. ∵ , ∴. ………………4分 ∴. 设的半径为. ∵,,

24、 ∴. ∴. ………………5分 ∵, ∴. 解得.(舍去负根) ∴的半径为2. ………………6分 24.C ………………1分 8 10

25、 ………………2分 (2)去年的体质健康测试成绩比今年好.(答案不唯一,合理即可) ………………3分 去年较今年低分更少,高分更多,平均分更大.(答案不唯一,合理即可) ………………4分 (3)70. ………………6分 25.(1)如图

26、 ………………2分 A (2)当时,随着的增大而减小;(答案不唯一) ………………4分 (3). ………………6分 26.解:抛物线的顶点在轴上, . . ………………1分 (1),. 抛物线的解析式为. ① ,,解得,. ………………2分 ②

27、依题意,设平移后的抛物线为. 抛物线的对称轴是,平移后与轴的两个交点之间的距离是, 是平移后的抛物线与轴的一个交点. ,即. 变化过程是:将原抛物线向下平移4个单位. ………………4分 (2). ………………6分 27..解: (1)作⊥交于. ∵⊥,, ∴. ∴. ∴. ………………1分 ∵,, ∴,. ∴. ∴. …

28、……………3分 (2)当点在射线上且满足时,的值不变,始终为1.理由如下: ………………4分 当点与点不重合时,延长到使得. ∵, ∴. ∴. ∵,是公共边, ∴≌. ∴. ………………5分 作⊥于,⊥于. ∵, ∴. ………………6分 ∵⊥,⊥,⊥, ∴四边形为矩形. ∴. ∵, ∴. ∵⊥, ∴. ∴,即. 当点与点重合时,由上过程可知结论成立.

29、 ………………7分 28.解(1)①的反射点是,. ………………1分 ②设直线与以原点为圆心,半径为1和3的两个圆的交点从左至右依次为,,,,过点作轴于点,如图. 可求得点的横坐标为. 同理可求得点,,的横坐标分别为,,. 点是的反射点,则上存在一点,使点关于直线的对称点在上,则. ∵,∴. 反之,若,上存在点,使得,故线段的垂直平分线经过原点,且与相交.因此点是的反射点. ∴点的横坐标的取值范围是,或. ………………4分 (2)圆心的横坐标的取值范围是. ………………7分

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服