1、3.3.1 1Statistical Process ControlGE Appliance Copyright 1999Tab 3:SPC统计过程控制3.3.2 2Statistical Process ControlGE Appliance Copyright 1999目标1.能够使用“XBar和S图表”进行连续数据分析。2.能够使用“p”控制图表进行离散数据分析。3.能够确定每一种图表类型的控制极限范围。4.能够对图表进行解释并确定工序什么时候处于失控状5.态。6.5.能够解释依据图表信息采取措施的重要性。Tab 3:统计过程控制目的介绍统计过程控制的概念3.3.3 3Statistic
2、al Process ControlGE Appliance Copyright 1999什么是:统计过程控制(SPC)统计 基于概率的决策方法。过程 -所有重复性的工作或步骤。控制 -监控工序运行。基于与“t test”假设检验相同的概念进行分析,能够使我们在出现的问题影响到输出结果之前,就作出有关工序的决定、采取行动、解决问题。当处于稳定状态的工序变差已经被外界可指定原因所影响时,SPC发出信号。当过程失控时,SPC将发出信号,你的任务是找出失控的原因,然后进行修正,确保问题不再发生。3.3.4 4Statistical Process ControlGE Appliance Copyri
3、ght 19996 个西格玛质量的重点是将控制范围转移到工序的上游,以充分利用对工序输入变量特征(关键X)的控制6个西格玛与 SPC控制图表应用于过程变量;自变量;设计变量 X1,X2,.,Xk提高因变量的稳定性,响应值 Y1,Y2,.,YmX X1 1X X2 2X X3 3Y YX X3.3.5 5Statistical Process ControlGE Appliance Copyright 1999什么时候使用SPC?希望获悉什么信息?关键过程变量(X或Y)在随时间变化吗?(即该过程稳定吗?)如何观察输出变量?基于实时数据、显示过程变化的图表SPC是一个严密的过程,它要求操作小组积极
4、参与数据的采集和分析。3.3.6 6Statistical Process ControlGE Appliance Copyright 1999X失控状况,记录采取的修复行为UCLLCLX Bar X Bar 图表图表样本/分组(按时间排序)Sigma Sigma 图表图表控制下限总平均中心线控制上限控制图表包含内容控制图表包含内容UCLs LCLs 平均Sigma中心线3.3.7 7Statistical Process ControlGE Appliance Copyright 1999控制图表统计过程控制图是由贝尔实验室的Walter shewhart 在1920年开发的,它提供了测量过
5、程的观察值相与用统计方法计算出的“控制极限范围”(期望值)的图形比较。绘制随时间而变化的表现。一个过程的改变包括平均值和/或方差的改变,因此我们总是同时绘出平均值以及方差的控制 图(Xbar和S)。平均值的控制极限表示双边假设检验极限,用于推断观测的样本均值是否发生了变化。Sigma的控制极限或极差表示方差在何处显示 差异。3.3.8 8Statistical Process ControlGE Appliance Copyright 1999假设检验?控制图是连续进行的双边检验的图形显示,其中 Ho和Ha定义如下:对于3限制,=0.00135Ho:iHa:i当一个分组的平均值超出了控制图极限
6、范围之外,它以图形表明样本平均值与历史平均值之间存在差值。注意:近似置信度为99.7%.99.7%.LCLxUCLx/2/2X3.3.9 9Statistical Process ControlGE Appliance Copyright 1999过程的稳定性过程的稳定性下图显示多种不稳定过程,控制图能够有助于确定这些不稳定状态什么时候产生、以及存在于什么环境。不稳定过程不存在可预测的表现,不稳定过程不存在可预测的表现,而且稳定的运行状态可能不是持续而且稳定的运行状态可能不是持续不变的不变的。ConditionTimeMean:SUSTAINEDIRREGULARTRENDCONSTANT I
7、RREGULARSHIFTSHIFTCONSTANTCONSTANTCONSTANT DECREASEDIRREGULARStdev:Copyright 1995 Six Sigma Academy,Inc.时间均值/方差3.3.1010Statistical Process ControlGE Appliance Copyright 1999过程稳定性过程稳定性 当过程输出值仅包括一般原因变差时,该过程被认为是稳定的。分组平均值和方差的测量值介于它们的控制极限范围之内,且未显示出存在可指定来源(特定原因)变差的证据。如果在控制图表中出现数据的非随机型态,或当某一点超出控制极限时,这是表示在你
8、的过程中出现了可指定来源(特定原因)的变差的明显信号。一个稳定过程的输出值很少超出正负三个Sigma范围。UCLLCL可指定来源变差区域可指定来源变差区域稳定过程变差区域(仅存在一般原因变差)X3.3.1111Statistical Process ControlGE Appliance Copyright 1999平均值与极差Xbar&RN10,典型3-5平均值与标准偏差Xbar与Sn 10控制图表类型控制图表类型存在两种控制图表类型:变量变量图表图表用于监控连续变量值X,如:一个直径或消费者满意度评分。属性属性图表图表用于监控离散变量值X,如:合格产品/次品数量,或存货水平。为了选择合适的
9、控制图监控你的过程,首先要决定重要的过程变量(X)是连续的还是离散的.中间值与极差X与R n 50跟踪 dpu/dpo次品数量nP图表n 50(常量)跟踪次品数量缺陷数量c 图表c 5缺陷数/单元U 图表N 变量监控离散监控离散X X的分布的分布图表图表控制图表类型控制图表类型3.3.1212Statistical Process ControlGE Appliance Copyright 1999 X Bar西格玛(Xbar-S)控制图用于分析和控制连续过程变量能够使用XbarS 图在测量阶段,通过图形显示方式将变差的特定原因与一般原因分离。在分析和改进阶段,在完成假设检验之前检查过程的稳定
10、性。在控制阶段,在改进措施实行后检验过程控制。Xbar-s 图表的最佳生成法是使用Mimitab 或其它统计软件包。如果没有该软件,则使用 Xbar-R 或其它手工控制图表3.3.1313Statistical Process ControlGE Appliance Copyright 1999使用Minitab软件构建Xbar-S图表文件文件:GEAPPS6SigmaMinitabTrainingMinitabGEAPPS6SigmaMinitabTrainingMinitabSession 4Session 4 control chart.mtwcontrol chart.mtw 选择 S
11、tat Control Charts Xbar-S3.3.1414Statistical Process ControlGE Appliance Copyright 1999使用Minitab软件构建Xbar-S图表选择响应数据栏,并输入一个表明分组大小的值,或从分组下标栏(在这个示例中,该项为“Week”)选择“Tests”.确定“失控状态”标准,选择“执行八种测试”或从提供的八种测试中选择需要进行的几项测试。3.3.1515Statistical Process ControlGE Appliance Copyright 1999Minitab生成了Xbar-S图,它自动计算控制极限范围。
12、图中标明了失控点,并且在会话框中得以总结。看!现在出现了什么?图中的“失控”点数相应于确定“失控”状态的八个测试。3.3.1616Statistical Process ControlGE Appliance Copyright 1999分析控制图分析控制图在第七和十六周测定的平均值低于最小控制限度3.957.它们属于失控点。这个变化是由一些指定原因(相关系统或初始范围)导致的。研究、识别并 确定该变差的可指定原因,将其在图表中相应的时间点上标明。在第七周的区域中心的变化量大于期望值,这样也要求进行研究、纠正并记录。失控指示可能来自任一图表。3.3.1717Statistical Proces
13、s ControlGE Appliance Copyright 1999计算平均值图的控制限要想确定平均值的控制极限范围,必须先计算出过程的总平均值。过程的总平均值K=分组平均值的个数控制上限:由下列公式得出:控制下限公式:对于较大的样本容量,给定过程的控制限就会较小,控制图灵敏度也就较高。X XXXkk12.3.3.1818Statistical Process ControlGE Appliance Copyright 1999计算变差图的控制限计算变差图的控制限要确定“s”的控制限,首先计算每一个分组的“s”值。下一步计算平均值“S”确定控制限的上下线。计算方法基于与平均值图相似的概念,
14、但是较之更为复杂。幸运地是,Minitab可以计算出这些极限范围。k=分组个数 ni=第I个分组的观测值数量。3.3.1919Statistical Process ControlGE Appliance Copyright 1999大型分组提高灵敏度当采样大小增加时,控制限范围缩小。这样可以提高过程的灵敏度,即提高了探测到变化的概率。控制图的灵敏度与采样大小的平方根的比例相关。即,采样大小为25的控制图灵敏度是采样大小为4的2.5倍(5/2)。根据中心极限定理,分组大小必须大于2。n=3n=10n=25UCLUCLUCLLCLLCLLCLCopyright 1995 Six Sigma Ac
15、ademy,Inc.3.3.2020Statistical Process ControlGE Appliance Copyright 1999为什么使用为什么使用 3 3 SigmaSigma控制控制限范围限范围?3 Sigma极限已经通过了时间的检验。3 Sigma极限可得出近似等于.00135,当过程实际上并未发生改变时,较小的会给系统带来较低的反应机会。由于在全过程中要进行大量的检验,因此这一点是十分重要的。2 2 s s s s-平均值的95%95%置信区间3 3 s s s s-a a a a=.003(=.003(原因原因:多次序列检验多次序列检验;减少可能发减少可能发生的错误。
16、生的错误。)4.5 4.5 s s s s-与顾客需求相对比的单个测量值的长期过程性能目 标。6.0 6.0 s s s s-与顾客需求相对比的单个测量值的短期过程变差目 标。当过程处于稳定状态时,3 s s s s 极限对变化的灵敏度较高,过度反应的可能性较低。3.3.2121Statistical Process ControlGE Appliance Copyright 1999一个消费者服务组织希望能够监控消费者对公司的满意度。每周都对公司的个地区服务中心的调查结果进行评估,并制成表格。下面的实例说明了Xbars控制图如何用于监控“消费者满意度”(在这个示例中,满意值越高说明公司运营情
17、况越出色。)创建Xbar-s控制图表的主要信息:分组总数量=25 分组大小,n=10总平均值,X=4.096 S=.1403变量控制图示例变量控制图示例控制限计算公式:实际数据的控制限计算参见下页的常量 SPC 表UCL=4.096+(.975 x 0.1403)=4.232LCL=4.096-(0.975 x 0.1403)=3.959UCLR=1.716 x 0.1403=0.2408LCLR=0.284 x 0.1403=0.03983.3.2222Statistical Process ControlGE Appliance Copyright 1999控制图常量与控制限范围控制图常量
18、与控制限范围变量控制图控制限常量下列表格包括用于构建SPC控制图的不同常量。用于计算控制图极限范围的标准偏差是以绘制图的类型为基础的。s对于Xbar图,它是分组平均值的标准偏差,这与合并标准差类似。s对于S图表,它是分组标准偏差的标准偏差。两种类型的公式都依赖于分组的大小。3.3.2323Statistical Process ControlGE Appliance Copyright 1999控制图的使用控制图表可以在测量和分析阶段用于跟踪过程的变化,分析显著的变化并记录。什么原什么原因导致因导致这种现这种现象发生象发生?控制图在控制过程中用于保持改进的结果。用图进行监控并记录输入变量(X)
19、,分析X的变化并进行控制。3.3.2424Statistical Process ControlGE Appliance Copyright 1999不断变化的控制限与随每次观测而变化的极限相比,控制图最好使用历史的稳定过程的极限。历史极限决定了所“期望”的数据范围或“零假设(H0)”。(使用Minita中的历史设置值)改变控制限范围,当:一个过程有了改变,且此改变被认为具有统计显著性的(即 Ha)。当完成了一个规定的实际过程改变。3.3.2525Statistical Process ControlGE Appliance Copyright 1999控制图说明对图表的解释与说明是在确定过程
20、能力之前,是以持续进行的过程控制为基础,.首先解释Sigma图表。在初始能力分析期间,如果你能够识别那些造成“失控”情况的特殊原因变差,那么,在计算控制极限范围时,可以将这些数据点删除。3.3.2626Statistical Process ControlGE Appliance Copyright 1999一般过程变差“乏味”这个图表代表一个可预测的过程,在该过程中变差仅受随机变差的支配。图中各点的上下跳动是不可预测的,但是它们都趋向于围绕着中心线(然而,不是非常接近)并且保持在控制极限范围之内。这种型态是任何控制图的目标,它不一定表明过程的最佳能力,也不一定表明工序能满足规格要求,但是,它
21、显示该工序是稳定的。3.3.2727Statistical Process ControlGE Appliance Copyright 1999特定原因改变“发生了什么?”在偶然情况下,某个因素进入过程并引起一个突发性的短暂改变。这个原因可在XBar图中表现为失控的一束点集,而S图通常并不会因为这些移动点而受到影响。一些典型原因:引入了一批不合规格的 材料测量系统的暂时间的偏移不同的检验员不同类型的工具3.3.2828Statistical Process ControlGE Appliance Copyright 1999有时过程会产生异常现象,其结果是偶然出现一些“奇异点”,它们很明显并不
22、属于基本过程分布的一部分。一个异常点产生过后,该过程恢复正常状态,直到下一个异常点出现。一些典型原因:测量中产生的错误置于一堆的底层(或顶层)的原材料条棒、线圈等的末端 污垢或进口材料奇异点奇异点奇异点过程之外“啊哈!现在出现一些有趣的现象啊哈!现在出现一些有趣的现象”3.3.2929Statistical Process ControlGE Appliance Copyright 1999一些典型原因:调节错误或不正确设置 原料或润滑剂的改变 移动变化现象:连续九个数据点位于中心线的一边。这种变化发生后,该过程会产生零件尺寸的平均值增大、产出增加或硬度增强等现象。该过程的基本变差并未改变,极
23、差也未显示变化的出现。过程突然移动“你做过什么?你做过什么?”3.3.3030Statistical Process ControlGE Appliance Copyright 1999现象:连续七个数据点呈上移趋向 连续七个数据点呈下移趋向过程趋势 “过程向何处发展?过程向何处发展?”一种趋向是过程的水平的逐渐移动,仅仅反应在xBar图表中。有时原料、测量和人为因素可能会引发过程趋势,但是这不大可能。问题通常出现在设备本身、电源供应、或先前的过程环境。一些典型原因:这种现象通常与“工具磨损”有关。例:电镀作业和多种 化工作业中的电 镀槽损耗 电路管磨损3.3.3131Statistical
24、Process ControlGE Appliance Copyright 1999区域测试区域测试TestZone11 point above+3 sigma2A+2 out of 3 in A+or above3B+4 out of 5 in B+or above4C+7 out of 8 in C+or above5C-7 out of 8 in C-or below6B-4 out of 5 in B-or below7A-2 out of 3 in A-or below81 point below-3 sigmaTest Criteria概率分布区域A+A-B+B-C+C-如果以下情
25、况发生,过程处于“失控”状态Copyright 1995 Six Sigma Academy,Inc.分组数3.3.3232Statistical Process ControlGE Appliance Copyright 1999平均值和极差图(Xbat R)如果靠人工进行,Sigma的计算是非常烦琐的,因此Xbar R图便成为人工控制图的首选方法。通过计算分组内数据的极差来显示变差 (极大 极小)使用A2Rbar得出3s/sqrt(n)的近似值,使用D3和D4乘以Rbar找出极差变差的控制极限的上下限。以类似于Xbar S的方法进行分析。3.3.3333Statistical Proces
26、s ControlGE Appliance Copyright 1999单个数据点和移动极值图(XmR)单个变量X 移动极差图适用于分组内并不存在可测量的变差的情况(如:过程温度、压力或其它类似的测量值),或者适用于合理分组数据不可得时(由于成本或其它限制因素)。小心小心 如果不当地应用于一个具有“组内”变差的过程时)如上图所示的控制图数据),所绘之图有时难读、难用。当跟踪单个测量值时,没有关于短期和长期变差差异的信息。3.3.3434Statistical Process ControlGE Appliance Copyright 1999可以探测到过程中任何大小的变化,这种可编程的灵敏性使
27、 EWMA 成为监控受控过程的优秀工具。注意EWMA 的形状,该图所使用的数据和我们前面连续数据图中的数据相同。我们注意到平均值存在向上的趋势,其中还有均值向下的显著位移。指数加权移动极差指数加权移动极差 (EWMA)EWMA)图表图表 EWMA 图比其他任何控制图灵敏得多。每个EWMA 图中的数据点都融有前面观察的信息,而且该图经过成形3.3.3535Statistical Process ControlGE Appliance Copyright 1999特征值控制图npnpp p3.3.3636Statistical Process ControlGE Appliance Copyrig
28、ht 1999主要属性图 np-测量所得的缺陷数量。控制极限范围基于 二项式分布。由于记录的是原始缺陷数量,因 此分组的大小应相同。p-记录的是样本的有缺陷部分。控制极限范围基于二项式分布。由于比例是缺陷相对于样本大小的比值,因此,样本的大小无须相同。3.3.3737Statistical Process ControlGE Appliance Copyright 1999属性控制图表范例属性控制图表范例一个本地的牙科小组想要了解为什么他们的许多患者都会失约;为此成立了一个问题解决小组,该小组决定使用一个p图表跟踪“失约”患者的百分比。牙科门诊部开始按月提供患者“失约”百分比。由于一次“失约”
29、就是一个缺陷约定,所以,平均有缺陷部分的百分比即为p。在头六个月的基础上计算控制图极限范围。使用的样本数量为每月100次预约。p 图表公式:p=236/600=0.393,公式中的Sdi=40+36+36+42+42+40=236Sni=600,6个月内的总采样数量UCL=.393+3(.393*.607)/100)=0.5395LCL=.393-3(.393*.607)/100)=0.24653.3.3838Statistical Process ControlGE Appliance Copyright 1999在时间段内的测量特性在时间段内的测量特性根据1996年的“失约”的数据构建控制
30、极限范围。该研究小组对患者失约的不同原因进行了分析和主次排序。研究小组确认如果为患者提供灵活的时间安排将有助于减少失约数 量。在1997年1月实行了灵活预约政策。控制表显示实行灵活预约政策后失约次数惊人的减少。通过采用新的预约政策,该小组将平均“失约”率由原来的40%降低到20%(20%是1997年数据的新的平均数)。3.3.3939Statistical Process ControlGE Appliance Copyright 1999创建P图文件文件:GEAPPS6SigmaMinitabTrainingMinitabGEAPPS6SigmaMinitabTrainingMinitabS
31、ession 4Patients.mtwSession 4Patients.mtw数据表数据表StatQuality ToolsP ChartStatQuality ToolsP Chart电子表格中需设置两栏,一栏用于记录数据数量,另一栏用于表示分组。一旦你打开对话框后,即确认计数栏为“变量”。而后填写分组数量(n),以及p的历史数据(此处p的历史数据是指其1996年的值。)3.3.4040Statistical Process ControlGE Appliance Copyright 1999改进图形输出选择“AnnotateTitle”按钮。使用可用的线型和格式输入图形标题。点击“OK
32、”。下一步选择“Stamp”按钮。在该对话框中确认子组的标识信息,即:月。点击“OK”。下一步,选择“FrameTick”按钮。在该对话框中对坐标轴标记的各种特殊设置进行确认,以使图形更容易使用。3.3.4141Statistical Process ControlGE Appliance Copyright 1999微调如果你需要对一些重要信息加以脚注,可以使用AnnotateFootnote按钮。此例中,参考P的历史数据。如果你想要添加参考线,可以使用FrameReference”按钮。此例中,位于1996年12月线表明截止年份。最后,图形表明,双击图形窗口以打开编辑调色板。该工具用于添加
33、年份日期并为其设置颜色。3.3.4242Statistical Process ControlGE Appliance Copyright 1999统计过程控制应用中的一些实践性问题过程管理和数据采集需要规范化的方法。对自动或半自动的环境最为适用(它是一个实时过程监控的工具)“失控”状态需要正确的应对措施。可以通过增加分组样本数量改进控制图检查出非随机变差的灵敏度。根据重置基线数据或确认运行结果来重新计算控制极限范围可能是适当的方法。只有在过程变差确实变动(稳定的)的情况下才重新计算新的控制极限范围。可以基于5到10个分组的数据计算临时控制极限范围,但是,均值和西格玛图的长期控制极限范围的计算
34、至少需要25组“受控”状态下的分组数据点。3.3.4343Statistical Process ControlGE Appliance Copyright 1999SPC图目标连续数据的SPC是为了引导过程向目标值发展,特征(离散数据)的SPC图用于将缺陷降到最低。0%拒绝目标连续数据离散数据3.3.4444Statistical Process ControlGE Appliance Copyright 1999 统计过程控制是一个出色的上游过程控制工具。控制图极为 适合对你的少数关键变量X进行监视和控制。控制图能够监控过程变差,并在过程变差受其他特殊原因影响的情况下生成提示信号。SPC控
35、制图用于监视以下对象:连续变量Xbar&SXbar&极差单个值&移动极差(XmR)EWMA控制图离散变量(属性)P图 np图 使用控制图的基本技巧为:-即时将数据绘图。-确认“失控”状态,并对其作出反应。-控制极限范围外的点。-查找造成“失控”的根本原因。-实施永久的解决方案。-如果过程并未“失控”,那么就不要做调整。主要概念主要概念:Tab 3-SPCTab 3-SPC3.3.4545Statistical Process ControlGE Appliance Copyright 1999 附录3.3.4646Statistical Process ControlGE Appliance
36、Copyright 1999统计质量控制说明书,1956由I.D.C.贸易公司、西部电子公司、P.O.Box26205、印第安纳波利斯、IN 46226出版统计质量控制 由McGraw-Hill有限公司的Eugene L.Grant和Richard S.Leavenworth于1980年第五次编辑出版理解统计过程控制 由SPC有限公司的Wheeler和David S.Chambers编写统计过程控制基础(参考手册)由A.I.A.G.出版电话(313)358-3570控制图参考文献3.3.4747Statistical Process ControlGE Appliance Copyright
37、1999控制图表选择流程控制图表选择流程3.3.4848Statistical Process ControlGE Appliance Copyright 1999Xbar&R Xbar&R 控制图计算公式控制图计算公式平均值和极差控制图单个变量 X值 与移动极差控制图中心线中心线3.3.4949Statistical Process ControlGE Appliance Copyright 1999离散数据控制图计算公式离散数据控制图计算公式p 图(用于绘制缺陷百分比图)np 图(用于绘制缺陷数量图)di=每个分组中的缺陷数量ni=分组大小N=所有分组的缺陷总数P图可以接受不同的分组大小中
38、心线计算公式中心线公式要求具有相同大小的分组3.3.5050Statistical Process ControlGE Appliance Copyright 1999说明指导当具备一个或多个下列条件时,控制图显示变化一个取值点 3s(控制极限)连续有9个点在平均值之上11个点中的10个在平均值之上 14个点中的12在平均值之上(p=.0055)连续有9个点平均值之下连续有7个点呈上升趋势 连续有7个点呈下降趋势14个点呈序列地不断向上、向下交替变换。3个点中的2个落在控制图的2-3s区域内。5个点中的4个落在平均线的同一侧小于1s的区域内。连续14个点落在平均线的两侧小于1s的区域内。连续8个数据点交替1s。
©2010-2024 宁波自信网络信息技术有限公司 版权所有
客服电话:4008-655-100 投诉/维权电话:4009-655-100