1、第一周 第1节 第二十二章 一元二次方程 22.1 一元二次方程 教学目标: 1.了解一元二次方程的概念;一般式ax2+bx+c=0(a≠0)及其派生的概念;应用一元二次方程概念解决一些简单题目. 2.通过设置问题,建立数学模型,模仿一元一次方程概念给一元二次方程下定义. 3.一元二次方程的一般形式及其有关概念. 4.通过生活学习数学,并用数学解决生活中的问题来激发学生的学习热情. 重点: 一元二次方程的概念及其一般形式和一元二次方程的有关概念并用这些概念解决问题. 难点: 通过提出问题,建立一元二次方程的数
2、学模型,再由一元一次方程的概念迁移到一元二次方程的概念. 教学过程 一、复习引入 学生活动:列方程. 问题(1)《九章算术》“勾股”章有一题:“今有户高多于广六尺八寸,两隅相去适一丈,问户高、广各几何?” 大意是说:已知长方形门的高比宽多6尺8寸,门的对角线长1丈,那么门的高和宽各是多少? 如果假设门的高为x尺,那么,这个门的宽为___尺,根据题意,得_____. 问题(2)如图,如果,那么点C叫做线段AB的黄金分割点. 如果假设AB=1,AC=x,那么BC=,根据题意,得:. 整理得:
3、. 问题(3)有一面积为54m2的长方形,将它的一边剪短5m,另一边剪短2m,恰好变成一个正方形,那么这个正方形的边长是多少? 如果假设剪后的正方形边长为x,那么原来长方形长是,宽是,根据题意,得:. 整理,得:. 探索新知: (1)上面三个方程整理后含有几个未知数? (2)按照整式中的多项式的规定,它们最高次数是几次? (3)有等号吗?或与以前多项式一样只有式子? 老师点评:(1)都只含一个未知数x;(2)它们的最高次数都是2次的;(3)都有等号,是方程. 因此,像这样的方程两边都是整式,只含有一个未知
4、数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程. 一般地,任何一个关于x的一元二次方程,经过整理,都能化成如下形式ax2+bx+c=0(a≠0).这种形式叫做一元二次方程的一般形式. 一个一元二次方程经过整理化成ax2+bx+c=0(a≠0)后,其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项. 例1.将方程(8-2x)(5-2x)=18化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数及常数项. 分析:一元二次方程的一般形式是ax2+bx+c=0(a≠0).因此,方程(8-2x)(5
5、2x)=18必须运用整式运算进行整理,包括去括号、移项等. 解:去括号,得: 40-16x-10x+4x2=18 移项,得:4x2-26x+22=0 其中二次项系数为4,一次项系数为-26,常数项为22. 例2.将方程(x+1)2+(x-2)(x+2)=1化成一元二次方程的一般形式,并写出其中的二次项、二次项系数;一次项、一次项系数;常数项. 分析:通过完全平方公式和平方差公式把(x+1)2+(x-2)(x+2)=1化成ax2+bx+c=0(a≠0)的形式. 解:去括号,得: x2+2x+1+x2-4=1
6、 移项,合并得:2x2+2x-4=0 其中:二次项2x2,二次项系数2;一次项2x,一次项系数2;常数项-4. 巩固练习 教材P27 练习1、2 应用拓展: 例3.求证:关于x的方程(m2-8m+17)x2+2mx+1=0,不论m取何值,该方程都是一元二次方程. 分析:要证明不论m取何值,该方程都是一元二次方程,只要证明m2-8m+17≠0即可. 证明:m2-8m+17=(m-4)2+1 ∵(m-4)2≥0 ∴(m-4)2+1>0,即(m-4)2+1≠0 ∴不论m取何值,该方程都是一元二
7、次方程. 归纳小结(学生总结,老师点评) 本节课要掌握: (1)一元二次方程的概念;(2)一元二次方程的一般形式ax2+bx+c=0(a≠0)和二次项、二次项系数,一次项、一次项系数,常数项的概念及其它们的运用. 作业: 板书设计: 一元二次方程 一,复习引入 三,巩固练习 五,归纳小结 二,探索新知 四,应用拓展 组长签名: 第一周 第2节 22.1 一元二次方程 教学目标: 1.了解一元二次方程根的概念,会判定一
8、个数是否是一个一元二次方程的根及利用它们解决一些具体问题. 2.提出问题,根据问题列出方程,化为一元二次方程的一般形式,列式求解;由解给出根的概念; 3.由根的概念判定一个数是否是根.同时应用以上的几个知识点解决一些具体问题. 重点: 判定一个数是否是方程的根; 难点: 由实际问题列出的一元二次方程解出根后还要考虑这些根是否确定是实际问题的根. 教学过程 复习引入: 问题如图,一个长为10m的梯子斜靠在墙上,梯子的顶端距地面的垂直距离为8m,那么梯子的底端距墙多少米? 设梯子底端距墙为xm,那么, 根据题意,可得方程为. 整理,得. 列表:
9、 x 0 1 2 3 4 5 6 7 8 … -36 -35 -32 -27 -20 -9 0 13 28 … 问题2.一个面积为120m2的矩形苗圃,它的长比宽多2m,苗圃的长和宽各是多少? 设苗圃的宽为xm,则长为m. 根据题意,得. 整理,得. 根据检验可知:和多满足条件所以一元二次方程有两个根和,但对已实际问题来说不合实际问题的要求,所以这问题的答案是。 探索新知: 提问:(1)问题1中一元二次方程的解是多少?问题2中一元二次方程的解是多少? (2)如果抛开实际问题,问题1
10、中还有其它解吗?问题2呢? 老师点评:(1)问题1中x=6是x2-36=0的解,问题2中,x=10是x2+2x-120=0的解. (3)如果抛开实际问题,问题(1)中还有x=-6的解;问题2中还有x=-12的解. 为了与以前所学的一元一次方程等只有一个解的区别,我们称: 一元二次方程的解叫做一元二次方程的根. 回过头来看:x2-36=0有两个根,一个是6,另一个是-6,但-6不满足题意;同理,问题2中的x=-12的根也满足题意.因此,由实际问题列出方程并解得的根,并不一定是实际问题的根,还要考虑这些根是否确实是实际问题的解.
11、 例1.下面哪些数是方程2x2+10x+12=0的根? -4,-3,-2,-1,0,1,2,3,4. 分析:要判定一个数是否是方程的根,只要把其代入等式,使等式两边相等即可. 解:将上面的这些数代入后,只有-2和-3满足方程的等式,所以x=-2或x=-3是一元二次方程2x2+10x+12=0的两根. 例2.你能用以前所学的知识求出下列方程的根吗? (1)x2-64=0 (2)3x2-6=0 (3)x2-3x=0 分析:要求出方程的根,就是要求出满足等式的数,可用直接观察结合平方根的意义. 解:(1)移项得
12、x2=64 根据平方根的意义,得:x=±8 即x1=8,x2=-8 (2)移项、整理,得x2=2 根据平方根的意义,得x=± 即x1=,x2=- (3)因为x2-3x=x(x-3) 所以x2-3x=0,就是x(x-3)=0 所以x=0或x-3=0 即x1=0,x2=3 巩固练习: 教材P28 练习1、2. 应用拓展: 例3.要剪一块面积为150cm2的长方形铁片,使它的长比宽多5cm,这块铁片应该怎样剪? 设长为xcm,则宽为(x-5)cm 列方程x
13、x-5)=150,即x2-5x-150=0 请根据列方程回答以下问题: (1)x可能小于5吗?可能等于10吗?说说你的理由. (2)完成下表: x 10 11 12 13 14 15 16 17 … x2-5x-150 (3)你知道铁片的长x是多少吗? 分析:x2-5x-150=0与上面两道例题明显不同,不能用平方根的意义和八年级上册的整式中的分解因式的方法去求根,但是我们可以用一种新的方法──“夹逼”方法求出该方程的根. 解:(1)x不可能小于5.理由:如果x<5,则宽(
14、x-5)<0,不合题意. x不可能等于10.理由:如果x=10,则面积x2-5x-150=-100,也不可能. (2) x 10 11 12 13 14 15 16 17 …… x2-5x-150 -100 -84 -66 -46 -24 0 26 54 …… (3)铁片长x=15cm 归纳小结: (1)一元二次方程根的概念及它与以前的解的相同处与不同处; (2)要会判断一个数是否是一元二次方程的根; (3)要会用一些方法求一元二次方程的根. 作业:练习册(第13页) 板书设计:
15、 一元二次方程(2) 一,复习引入 三,巩固练习 五,归纳小结 二,探索新知 四,应用拓展 组长签名: 第一周 第3,4节 习题22.1 教学目标: 1. 通过习题提高学生做题解题能力。 2. 在做题的过程中重新体会上节课当中讲的一些重点和难点。 3. 培养学生勤奋做题的好习惯。 重点: 理解题要求。 难点: 把所学过的课本知识适当的应用在实际问题上。 教学过程: 1. 将下列方程化成一元二次方程的一般形式,并写出二次项系数,一次项系数,及常数项: (1) (2)
16、 (3) (4) 2. 根据下列问题列方程,并将其化成一元二次方程的一般形式: (1) 一个圆的面积是,球半径。 解:→化成一般形式,得:。 (2) 一个直角三角形的两条直角边相差,面积,球较长的直角边的长。 解:设较长的直角边长为,较短的直角边为可得: 化成一般形式得:。 3. 下列哪些书是方程的根? -4,-3,-2,-1,0,1,2,3,4 解:当中-4和3是该方程的根。 4. 写出下列方程的跟: (1) (2) (3) 解:(1)和 (2)和 (
17、3)和 根据下列问题列方程,并将其化成一元二次方程的一般形式(第5~7题) 5. 一个长方形的长比宽多,面积是,长方形的长和宽各是多少? 解:设长方形的长为,则宽为,按题意可得: 化成一般形式: 6. 有一根唱的铁丝,怎样用它围成一个面积为的长方形? 解:这个长方形的周长为,设长方形的长为宽为,按题意可得: ,化成一般形式:。 7. 参加一次聚会的每两人都握了一次手,所有人共握了10次,有多少人参加聚会? 解:设有个人参加聚会,没人除了自己共握手次,因为每两个人一次握手,按题意可得:,化成一般形式:。 8. 你能想出下列方程的根吗?如果能,写出方程的根,并说出你是怎样想出的
18、 解: , , , , 9. 如果2是方程的一个跟,那么常数是几?你能得出这个方程的其他根吗? 解:把已知根2放入的位置,得出关于的一元一次方程,解方程得,把再放入原方程得:,所以这个方程另外一个根是-2. 作业: 板书设计: 习题22.1 一,第1~2题 三,第5~6题 五,第8题 二,第3~4题 四,第7题 六,第9题 组长签名: 第一周 第5节 22.2.1 配方法(一) 教学目标: 1.理解
19、一元二次方程“降次”──转化的数学思想,并能应用它解决一些具体问题. 2.提出问题,列出缺一次项的一元二次方程ax2+c=0,根据平方根的意义解出这个方程,然后知识迁移到解a(ex+f)2+c=0型的一元二次方程. 重点: 运用开平方法解形如(x+m)2=n(n≥0)的方程;领会降次──转化的数学思想. 难点: 通过根据平方根的意义解形如x2=n,知识迁移到根据平方根的意义解形如(x+m)2=n(n≥0)的方程. 教学过程 复习引入 问题1.填空 (1)x2-8x+______=(x-______)2;(2)9x2+12x+_____=
20、3x+_____)2;(3)x2+px+_____=(x+______)2. 问题2.如图,在△ABC中,∠B=90°,点P从点B开始,沿AB边向点B以1cm/s的速度移动,点Q从点B开始,沿BC边向点C以2cm/s的速度移动,如果AB=6cm,BC=12cm,P、Q都从B点同时出发,几秒后△PBQ的面积等于8cm2? 老师点评: 问题1:根据完全平方公式可得:(1)16 4;(2)4 2;(3)()2 . 问题2:设x秒后△PBQ的面积等于8cm2 则PB=x,BQ=2x 依题意,得:x·2x=8 x2=8
21、 根据平方根的意义,得x=±2 即x1=2,x2=-2 可以验证,2和-2都是方程x·2x=8的两根,但是移动时间不能是负值. 所以2秒后△PBQ的面积等于8cm2. 探索新知: 上面我们已经讲了x2=8,根据平方根的意义,直接开平方得x=±2,如果x换元为2t+1,即(2t+1)2=8,能否也用直接开平方的方法求解呢? 把2t+1变为上面的x,那么2t+1=±2,即2t+1=2,2t+1=-2 方程的两根为t1=-,t2=-- 例1:解方程:x2+4x+4=1 分析:很清楚,x2+4x+4是一个完全平
22、方公式,那么原方程就转化为(x+2)2=1. 解:由已知,得:(x+2)2=1 直接开平方,得:x+2=±1 即x+2=1,x+2=-1 所以,方程的两根x1=-1,x2=-3 例2.市政府计划2年内将人均住房面积由现在的10m2提高到14.4m,求每年人均住房面积增长率. 分析:设每年人均住房面积增长率为x.一年后人均住房面积就应该是10+10x=10(1+x);二年后人均住房面积就应该是10(1+x)+10(1+x)x=10(1+x)2 解:设每年人均住房面积增长率为x, 则:10(1+x)2=14.4
23、 (1+x)2=1.44 直接开平方,得1+x=±1.2 即1+x=1.2,1+x=-1.2 所以,方程的两根是x1=0.2=20%,x2=-2.2 因为每年人均住房面积的增长率应为正的,因此,x2=-2.2应舍去. 所以,每年人均住房面积增长率应为20%. (学生小结)老师引导提问:解一元二次方程,它们的共同特点是什么? 共同特点:把一个一元二次方程“降次”,转化为两个一元一次方程.我们把这种思想称为“降次转化思想”. 巩固练习: 教材P31 练习. 应用拓展: 例3.某公
24、司一月份营业额为1万元,第一季度总营业额为3.31万元,求该公司二、三月份营业额平均增长率是多少? 分析:设该公司二、三月份营业额平均增长率为x,那么二月份的营业额就应该是(1+x),三月份的营业额是在二月份的基础上再增长的,应是(1+x)2. 解:设该公司二、三月份营业额平均增长率为x. 那么1+(1+x)+(1+x)2=3.31 把(1+x)当成一个数,配方得: (1+x+)2=2.56,即(x+)2=2.56 x+=±1.6,即x+=1.6,x+=-1.6 方程的根为x1=10%,x2=-3.1 因为增长率
25、为正数, 所以该公司二、三月份营业额平均增长率为10%. 归纳小结: 由应用直接开平方法解形如x2=p(p≥0),那么x=±转化为应用直接开平方法解形如(mx+n)2=p(p≥0),那么mx+n=±,达到降次转化之目的. 作业: 板书设计: 22.2.1 配方法(1) 一,复习引入 三,巩固练习 五,归纳小结 二,探索新知 四,应用拓展 组长签名: 第一周 第6节 22.2.1 配方法(二) 教学目标: 1.了解配方法的概念,掌握运用配方法解一元二次方
26、程的步骤. 2.通过复习上一节课的解题方法,给出配方法的概念,然后运用配方法解决一些具体题目. 重点: 讲清配方法的解题步骤. 难点: 把常数项移到方程右边后,两边加上的常数是一次项系数一半的平方. 教学过程: 复习引入:解下列方程: (1)x2-8x+7=0 (2)x2+4x+1=0 老师点评:我们前一节课,已经学习了如何解左边含有x的完全平方形式,右边是非负数,不可以直接开方降次解方程的转化问题,那么这两道题也可以用上面的方法进行解题. 解:(1)x2-8x+(-4)2+7-(-4)2=0 (x-4)2=9
27、 x-4=±3即x1=7,x2=1 (2)x2+4x=-1 x2+4x+22=-1+22 (x+2)2=3即x+2=± x1=-2,x2=--2 探索新知: 像上面的解题方法,通过配成完全平方形式来解一元二次方程的方法,叫配方法. 可以看出,配方法是为了降次,把一个一元二次方程转化为两个一元一次方程来解. 例1.解下列方程 (1)x2+6x+5=0 (2)2x2+6x-2=0 (3)(1+x)2+2(1+x)-4=0 分析:我们已经介绍了配方法,因此,我们解这些方程就可以用配方法来
28、完成,即配一个含有x的完全平方. 解:(1)移项,得:x2+6x=-5 配方:x2+6x+32=-5+32(x+3)2=4 由此可得:x+3=±2,即x1=-1,x2=-5 (2)移项,得:2x2+6x=-2 二次项系数化为1,得:x2+3x=-1 配方x2+3x+()2=-1+()2(x+)2= 由此可得x+=±,即x1=-,x2=-- (3)去括号,整理得:x2+4x-1=0 移项,得x2+4x=1 配方,得(x+2)2=5
29、 x+2=±,即x1=-2,x2=--2 巩固练习: 教材P34 练习 1,2(1),(3),(5),(6) 应用拓展: 例2.用配方法解方程(6x+7)2(3x+4)(x+1)=6 分析:因为如果展开(6x+7)2,那么方程就变得很复杂,如果把(6x+7)看为一个数y,那么(6x+7)2=y2,其它的3x+4=(6x+7)+,x+1=(6x+7)-,因此,方程就转化为y的方程,像这样的转化,我们把它称为换元法. 解:设6x+7=y 则3x+4=y+,x+1=y- 依题意,得:y2(y+)(y-
30、6 去分母,得:y2(y+1)(y-1)=72 y2(y2-1)=72, y4-y2=72 (y2-)2= y2-=± y2=9或y2=-8(舍) ∴y=±3 当y=3时,6x+7=3 6x=-4 x=- 当y=-3时,6x+7=-3 6x=-10 x=- 所以,原方程的根为x1=-,x2=- 归纳小结: 配方法的概念及用配方法解一元二次方程的步骤. 作业:练习册(第15页) 板书设计: 22.2.1 配方法(2) 一,复习引入 三,巩固练习 五,归纳小结
31、 二,探索新知 四,应用拓展 组长签名: 第一周 第7节 22.2.2 公式法 教学目标: 1.理解一元二次方程求根公式的推导过程,了解公式法的概念,会熟练应用公式法解一元二次方程. 2.复习具体数字的一元二次方程配方法的解题过程,引入ax2+bx+c=0(a≠0)的求根公式的推导公式,并应用公式法解一元二次方程. 重点: 求根公式的推导和公式法的应用. 难点: 一元二次方程求根公式法的推导. 教学过程 复习引入:用配方法解下列
32、方程 (1)6x2-7x+1=0 (2)4x2-3x=52 (1)移项,得:6x2-7x=-1 二次项系数化为1,得:x2-x=- 配方,得:x2-x+()2=-+()2 (x-)2= x-=± x1=+==1 x2=-+== (2)略 总结用配方法解一元二次方程的步骤. (1)移项; (2)化二次项系数为1; (3)方程两边都加上一次项系数的一半的平方; (4)原方程变形为(x+m)2=n的形式; (5)如果右边是非负数,就可以直接开平方求出方程的
33、解,如果右边是负数,则一元二次方程无解. 探索新知: 如果这个一元二次方程是一般形式ax2+bx+c=0(a≠0),你能否用上面配方法的步骤求出它们的两根,请同学独立完成下面这个问题. 问题:已知ax2+bx+c=0(a≠0)且b2-4ac≥0,试推导它的两个根x1=,x2= 分析:因为前面具体数字已做得很多,我们现在不妨把a、b、c也当成一个具体数字,根据上面的解题步骤就可以一直推下去. 解:移项,得:ax2+bx=-c 二次项系数化为1,得x2+x=- 配方,得:x2+x+()2=-+()2 即(x+)2=
34、 ∵b2-4ac≥0且4a2>0 ∴≥0 直接开平方,得:x+=± 即x= ∴x1=,x2= 由上可知,一元二次方程ax2+bx+c=0(a≠0)的根由方程的系数a、b、c而定,因此: (1)解一元二次方程时,可以先将方程化为一般形式ax2+bx+c=0,当b-4ac≥0时,将a、b、c代入式子x=就得到方程的根. (2)这个式子叫做一元二次方程的求根公式. (3)利用求根公式解一元二次方程的方法叫公式法. (4)由求根公式可知,一元二次方程最多有两个实数根. 例1.用公式法解下列方程
35、. (1)2x2-4x-1=0 (2)5x+2=3x2 (3)(x-2)(3x-5)=0 (4)4x2-3x+1=0 分析:用公式法解一元二次方程,首先应把它化为一般形式,然后代入公式即可. 解:(1)a=2,b=-4,c=-1 b2-4ac=(-4)2-4×2×(-1)=24>0 x= ∴x1=,x2= (2)将方程化为一般形式 3x2-5x-2=0 a=3,b=-5,c=-2 b2-4ac=(-5)2-4×3×(-2)=49>0 x= x
36、1=2,x2=- (3)将方程化为一般形式 3x2-11x+9=0 a=3,b=-11,c=9 b2-4ac=(-11)2-4×3×9=13>0 ∴x= ∴x1=,x2= (3)a=4,b=-3,c=1 b2-4ac=(-3)2-4×4×1=-7<0 因为在实数范围内,负数不能开平方,所以方程无实数根. 巩固练习: 教材P37 练习1.(1)、(2),(3)、(5) 应用拓展: 例2.某数学兴趣小组对关于x的方程(m+1)+(m-2)x-1=0提出了下列问题.
37、 (1)若使方程为一元二次方程,m是否存在?若存在,求出m并解此方程. (2)若使方程为一元二次方程m是否存在?若存在,请求出. 你能解决这个问题吗? 分析:能.(1)要使它为一元二次方程,必须满足m2+1=2,同时还要满足(m+1)≠0. (2)要使它为一元一次方程,必须满足: ①或②或③ 解:(1)存在.根据题意,得:m2+1=2 m2=1 m=±1 当m=1时,m+1=1+1=2≠0 当m=-1时,m+1=-1+1=0(不合题意,舍去)
38、 ∴当m=1时,方程为2x2-1-x=0 a=2,b=-1,c=-1 b2-4ac=(-1)2-4×2×(-1)=1+8=9 x= x1=,x2=- 因此,该方程是一元二次方程时,m=1,两根x1=1,x2=-. (2)存在.根据题意,得:①m2+1=1,m2=0,m=0 因为当m=0时,(m+1)+(m-2)=2m-1=-1≠0 所以m=0满足题意. ②当m2+1=0,m不存在. ③当m+1=0,即m=-1时,m-2=-3≠0 所以m=-1也满足题意.
39、 当m=0时,一元一次方程是x-2x-1=0, 解得:x=-1 当m=-1时,一元一次方程是-3x-1=0 解得x=- 因此,当m=0或-1时,该方程是一元一次方程,并且当m=0时,其根为x=-1;当m=-1时,其一元一次方程的根为x=-. 归纳小结: (1)求根公式的概念及其推导过程; (2)公式法的概念; (3)应用公式法解一元二次方程; (4)初步了解一元二次方程根的情况. 作业: 板书设计: 22.2.2 公式法 一,复习引入 三,巩固练习 五,归纳小结
40、 二,探索新知 四,应用拓展 组长签名: 第一周 第8节 22.2.3 因式分解法 教学目标: 1.掌握用因式分解法解一元二次方程. 2.通过复习用配方法、公式法解一元二次方程,体会和探寻用更简单的方法──因式分解法解一元二次方程,并应用因式分解法解决一些具体问题. 重点: 用因式分解法解一元二次方程. 难点: 让学生通过比较解一元二次方程的多种方法感悟用因式分解法使解题简便. 教学过程 复习引入:解下列方程. (
41、1)2x2+x=0(用配方法) (2)3x2+6x=0(用公式法) (1)配方法将方程两边同除以2后,x前面的系数应为,的一半应为,因此,应加上()2,同时减去()2.(2)直接用公式求解. 探索新知 请同学们口答下面各题. (1)上面两个方程中有没有常数项? (2)等式左边的各项有没有共同因式? 上面两个方程中都没有常数项;左边都可以因式分解: 2x2+x=x(2x+1),3x2+6x=3x(x+2) 因此,上面两个方程都可以写成: (1)x(2x+1)=0 (2)3x(x+2)=0 因为两
42、个因式乘积要等于0,至少其中一个因式要等于0,也就是(1)x=0或2x+1=0,所以x1=0,x2=-. (2)3x=0或x+2=0,所以x1=0,x2=-2. 因此,我们可以发现,上述两个方程中,其解法都不是用开平方降次,而是先因式分解使方程化为两个一次式的乘积等于0的形式,再使这两个一次式分别等于0,从而实现降次,这种解法叫做因式分解法. 例1.解方程 (1)4x2=11x (2)(x-2)2=2x-4 分析:(1)移项提取公因式x;(2)等号右侧移项到左侧得-2x+4提取-2因式,即-2(x-2),再提取公因式x-2,便可达到分解因
43、式;一边为两个一次式的乘积,另一边为0的形式 解:(1)移项,得:4x2-11x=0 因式分解,得:x(4x-11)=0 于是,得:x=0或4x-11=0 x1=0,x2= (2)移项,得(x-2)2-2x+4=0 (x-2)2-2(x-2)=0 因式分解,得:(x-2)(x-2-2)=0 整理,得:(x-2)(x-4)=0 于是,得x-2=0或x-4=0 x1=2,x2=4 例2.已知9a2-4b2=0,求代数式的值. 分析:要求的值,首先要对它进行化简,然后从已知条件入
44、手,求出a与b的关系后代入,但也可以直接代入,因计算量比较大,比较容易发生错误. 解:原式= ∵9a2-4b2=0 ∴(3a+2b)(3a-2b)=0 3a+2b=0或3a-2b=0, a=-b或a=b 当a=-b时,原式=-=3 , 当a=b时,原式=-3. 巩固练习: 教材P40 练习1、2. 应用拓展: 例3.我们知道x2-(a+b)x+ab=(x-a)(x-b),那么x2-(a+b)x+ab=0就可转化为(x-a)(x-b)=0,请你用上面的方法解下列方程. (1)x2-3x-4=0
45、 (2)x2-7x+6=0 (3)x2+4x-5=0 分析:二次三项式x2-(a+b)x+ab的最大特点是x2项是由x·x而成,常数项ab是由-a·(-b)而成的,而一次项是由-a·x+(-b·x)交叉相乘而成的.根据上面的分析,我们可以对上面的三题分解因式. 解(1)∵x2-3x-4=(x-4)(x+1) ∴(x-4)(x+1)=0 ∴x-4=0或x+1=0 ∴x1=4,x2=-1 (2)∵x2-7x+6=(x-6)(x-1) ∴(x-6)(x-1)=0 ∴x-6=0或x-1=0 ∴x1=6,x
46、2=1 (3)∵x2+4x-5=(x+5)(x-1) ∴(x+5)(x-1)=0 ∴x+5=0或x-1=0 ∴x1=-5,x2=1 上面这种方法,我们把它称为十字相乘法. 归纳小结: (1)用因式分解法,即用提取公因式法、十字相乘法等解一元二次方程及其应用. (2)三种方法(配方法、公式法、因式分解法)的联系与区别: 联系①降次,即它的解题的基本思想是:将二次方程化为一次方程,即降次. ②公式法是由配方法推导而得到. ③配方法、公式法适用于所有一元二次方程,因式分解法适用于某些一元二次方程. 区别:①配方法要先配方,再开方求根. ②公式法直接利用公式求根. ③因式分解法要使方程一边为两个一次因式相乘,另一边为0,再分别使各一次因式等于0. 作业: 板书设计: 22.2.2 因式分解法 一,复习引入 三,巩固练习 五,归纳小结 二,探索新知 四,应用拓展 组长签名: 24






