1、5-1(5-13) 试按迭加原理并利用附录IV求解习题5-4。 解: (向下)(向上) (逆) (逆)返回5-2(5-14) 试按迭加原理并利用附录IV求解习题5-5。解:分析梁的结构形式,而引起BD段变形的外力则如图(a)所示,即弯矩 与弯矩 。 由附录()知,跨长l的简支梁的梁一端受一集中力偶M作用时,跨中点挠度为 。用到此处再利用迭加原理得截面C的挠度 (向上)返回5-3(5-15) 试按迭加原理并利用附录IV求解习题5-10。解: 返回5-4(5-16) 试按迭加原理并利用附录IV求解习题5-7中的 。 解:原梁可分解成图5-16a和图5-16d迭加,而图5-16a又可分解成图5-16
2、b和5-16c。由附录得返回5-5(5-18) 试按迭加原理求图示梁中间铰C处的挠度 ,并描出梁挠曲线的大致形状。已知EI为常量。解:(a)由图5-18a-1(b)由图5-18b-1 = 返回5-6(5-19) 试按迭加原理求图示平面折杆自由端截面C的铅垂位移和水平位移。已知杆各段的横截面面积均为A,弯曲刚度均为EI。解: 返回5-7(5-25) 松木桁条的横截面为圆形,跨长为4m,两端可视为简支,全跨上作用有集度为 的均布荷载。已知松木的许用应力 ,弹性模量 。桁条的许可相对挠度为 。试求桁条横截面所需的直径。(桁条可视为等直圆木梁计算,直径以跨中为准。)解:均布荷载简支梁,其危险截面位于跨中点,最大弯矩为 ,根据强度条件有 从满足强度条件,得梁的直径为 对圆木直径的均布荷载,简支梁的最大挠度 为 而相对挠度为 由梁的刚度条件有 为满足梁的刚度条件,梁的直径有 由上可见,为保证满足梁的强度条件和刚度条件,圆木直径需大于 。 返回5-8(5-26) 图示木梁的右端由钢拉杆支承。已知梁的横截面为边长等于0.20 m的正方形, , ;钢拉杆的横截面面积 。试求拉杆的伸长 及梁中点沿铅垂方向的位移 。 解:从木梁的静力平衡,易知钢拉杆受轴向拉力40 于是拉杆的伸长 为 = 木梁由于均布荷载产生的跨中挠度 为 梁中点的铅垂位移 等于因拉杆伸长引起梁中点的刚性位移 与中点挠度 的和,即