ImageVerifierCode 换一换
格式:DOC , 页数:7 ,大小:155.50KB ,
资源ID:8145146      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/8145146.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【pc****0】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【pc****0】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(混合动力电动汽车的电池管理架构分析.doc)为本站上传会员【pc****0】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

混合动力电动汽车的电池管理架构分析.doc

1、混合动力电动汽车的电池管理架构分析用于电动汽车(EV)和混合动力电动汽车(HEV)的电池技术已经获得了显著进步,不但电池能量密度已稳步提高,而且电池还能可靠地充电和放电数千次。如果设计工程师能有效利用这些技术进步,那么就成本、可靠性和寿命而言,电动汽车和混合动力电动汽车就有潜力与传统汽车竞争。一个电池规定的容量是指电池从100%充电状态到零充电状态所能提供的电量。充电到100%充电状态或放电到零充电状态会迅速缩短电池寿命,因此应该仔细管理电池以避免完全充电或完全放电状态。与工作在30%到70%的充电状态之间(利用40%的容量)相比,工作在10%充电状态到90%充电状态之间(利用80%的规定容量

2、)可以将电池的充电循环总次数减少到原来的1/3或更低。在有效电池容量和电池寿命之间进行平衡给电池系统设计工程师带来了挑战。考虑前文提到的利用40%容量与利用80%容量的情况。如果系统将电池为限制为仅使用其40%容量,以便使电池寿命延长到原来的3倍,那么电池尺寸必须增大1倍以获得与利用80%容量情况下一样多的可用容量。但这会使电池系统的重量和体积增大1倍,从而提高成本并降低效率。汽车制造商一般要求电池寿命超过10年,且对必需的可用电池容量做了规定。电池系统设计工程师面临的挑战是必须竭尽所能用最小的电池组实现最大的容量。为达到这个目标,电池系统必须采用精密的电子电路仔细控制和监视电池。电动汽车电池

3、组系统电动汽车电池组由多个电池串联叠置组成。一个典型的电池组大约有96个电池,充电到4.2V的锂离子电池而言,这样的电池组可产生超过400V的总电压。尽管汽车电源系统将电池组看作单个高压电池,每次都对整个电池组进行充电和放电,但电池控制系统必须独立考虑每个电池的情况。如果电池组中的一个电池容量稍微低于其他电池,那么经过多个充电/放电周期后,其充电状态将逐渐偏离其它电池。如果这个电池的充电状态没有周期性地与其它电池平衡,那么它最终将进入深度放电状态,从而导致损坏,并最终形成电池组故障。为防止这种情况发生,每个电池的电压都必须监视,以确定充电状态。此外,必须有一个装置让电池单独充电或放电,以平衡这

4、些电池的充电状态。电池组监视系统的一个重要考虑因素是通信接口。就PC板内的通信而言,常用的选项包括串行外设接口(SPI)总线、I2C总线,每种总线的通信开销都很低,适用于低干扰环境。另一个选项是控制器局域网(CAN)总线,这种总线在汽车应用中被广泛使用。CAN总线非常鲁棒,具有误差检测和故障容限特性,但是它的通信开销很大,材料成本也很高。尽管从电池系统到汽车主CAN总线的连接是值得要的,但在电池组内采用SPI或I2C通信是有优势的。凌力尔特公司(Linear)已经推出一款使电池系统设计工程师能够满足这些苛刻要求的器件。LTC6802是一个电池组监视器IC,能测量多达12个叠置电池的电压。LTC

5、6802还有内部开关,使电池可以单独放电,以便它们能与电池组中的其它电池进入平衡状态。为说明电池组架构,考虑一个具有96个锂离子电池的系统。这将需要8个LTC6802来监视整个电池组,其中每个器件工作在不同的电压。当采用4.2V锂离子电池时,底端监视器件将跨接在12个电池上,电位调节范围为0V至50.4V,下一组电池的电压范围为50.4V到100.8V,顺着电池组依此类推。这些器件之间在不同的电压上进行通信带来了难以克服的挑战。人们已经考虑过多种方法,但由于汽车制造商优先考虑的重点不同,每种方法都有优点和缺点。电池监视要求在电池监视系统架构之间作抉择时,至少有5个需要平衡的主要要求。它们的相对

6、重要性取决于最终客户的需求和期望。(1)准确性。为了利用可能的最大电池容量,电池监视器需要准确。不过,汽车是一种噪声系统,在很大的频率范围内存在电磁干扰。任何的准确性降低都会对电池组寿命和性能造成有害影响。(2)可靠性。不管采用何种电源,汽车制造商必须满足极高的可靠性标准。此外,高能量容量以及有些电池技术潜在的不稳定本性是人们担心的主要安全问题。相对于严重的电池故障,在保守性条件下执行关断操作的故障安全系统更加可取,尽管它有可能使乘客不幸滞留。因此,必须仔细监视和控制电池系统,以在系统中确保对整个电池寿命期的全面控制。为最大限度减少假的和真的故障,一个良好设计的电池组系统必须有鲁棒的通信,最大

7、限度减少故障模式以及故障检测。(3)可制造性。现代的汽车已包含大量采用复杂布线线束的电子产品。就汽车制造而言,增加复杂的电子电路和配线以支持电动汽车/混合动力电动汽车电池系统会使复杂性更高。总的组件和连接数量必须尽量地少以满足严格的尺寸和重量限制,并确保大批量生产是切实可行的。(4)成本。复杂的电子控制系统可能很昂贵,最大限度减少如微控制器、接口控制器、电流隔离器和晶振等成本相对高昂的元件数量可大大降低系统的总成本。(5)功率。电池监视器本身也是电池的负载,其较低的工作电流可提高系统效率,较低的备用电流可在汽车熄火后防止电池过度放电。电池监视架构本帖隐藏的内容需要回复才可以浏览图1至图4给出了

8、4种电池监视系统架构。假设一个由96个电池组成的系统以12个电池为一组分成8组,表1对这种情况下的每种架构的优点和缺点进行了总结。在每种情况下,一个LTC6802监视一个由12个电池组成的电池组。每种架构都设计为一个自主的电池监视系统,都提供到汽车主CAN总线的CAN总线接口,且与汽车的其余部分是电流隔离的。点击图片可查看大图!表1:电池监视架构比较 1并行独立CAN模块(图1)点击图片可查看大图!图1:并行独立CAN模块 每个由12个电池组成的模块都含有一个电路板,板上有LTC6802、微控制器、CAN接口和电流隔离变压器。系统所需的大量电池监视数据会使汽车的主CAN总线崩溃,因此这些CAN

9、模块需要在局域CAN子网上。CAN子网由主控制器协调,该控制器还提供至汽车主CAN总线的网关。点击图片可查看大图!2具CAN网关的并行模块(图2)图2:具CAN网关的并行模块每个由12个电池组成的模块都含有一个电路板,板上有LTC6802和数字隔离器。这些模块与控制器电路板有独立的接口连接,控制器电路板上含有微控制器、CAN接口和电流隔离变压器。微控制器协调这些模块并提供到汽车主CAN总线的网关。3具CAN网关的单个监视模块(图3)点击图片可查看大图!图3:具CAN网关的单个监视模块 在这种配置中,由12个电池组成的模块内部没有监视和控制电路,而是在单个电路板上有8个LTC6802监视器IC,

10、每个IC都连接到其电池模块。LTC6802器件通过非隔离SPI兼容串行接口通信。单个微控制器通过SPI兼容串行接口控制全部电池组监视器,并充当到汽车主CAN总线的网关。这些再加上CAN收发器和电流隔离变压器就形成了完整的电池监视系统。4具CAN网关的串行模块(图4)点击图片可查看大图!图4:具CAN网关的串行模块 这种架构类似于单个监视模块,除了每个LTC6802都在由12个电池组成的模块内部的电路板上。这8个模块通过LTC6802非隔离SPI兼容串行接口通信,这需要在电池模块对之间连接3或4个传导电缆。单个微控制器通过底部监视器IC控制全部电池组监视器,同时兼作到汽车主CAN总线的网关。这里

11、仍然需要CAN收发器和电流隔离变压器以形成完整的电池监视系统。电池监视架构选择由于并行接口需要大量连接和外部隔离,第1种和第2种架构一般易产生问题。为应对复杂性提高的问题,设计工程师需要实现到每个监视器器件的独立通信。第3种和第4种架构都是限制最少的简化方法。LTC6802可满足所有这4种配置的需求,系统设计工程师可以选择LTC6802的两个版本,一个用于串行配置,一个用于并行配置。LTC6802-1用于叠置式SPI接口配置。多个LTC6802-1器件可以通过一个接口串行连接,该接口无需外部电平移位器或隔离器就可沿着电池组来回发送数据。LTC6802-2允许单个器件用在并行架构中。这两个版本器件具有同样的电池监视规格和功能。电动汽车对电池组有大量需求。汽车制造商希望具经济效益的电池系统,以满足他们严格的可靠性要求。凌力尔特公司最新的电池监视器IC给系统设计工程师在性能不打折扣的情况下选择最佳电池组架构带来很大的灵活性。作者:JimDouglass

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服