ImageVerifierCode 换一换
格式:DOC , 页数:5 ,大小:30.50KB ,
资源ID:8135721      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/8135721.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【pc****0】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【pc****0】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(小学数学分数应用题单位“1”教学初探.doc)为本站上传会员【pc****0】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

小学数学分数应用题单位“1”教学初探.doc

1、小学数学分数应用题单位“1”教学初探潘贵英(凯里学院 数学与应用数学 函授本科2009级,贵州 凯里 556000)摘 要:分数应用题主要是指由于分数乘法意义的扩展而出现的应用题。教学分数应用题时,常采取找准单位“1”,并判断单位“1”是已知的还是未知的进行引领。找单位“1”的一般方法是根据一些标识性的词来确定。但在具体教学中遇到某些问题用一般方法解决仍困难,现给出解决问题相应对策。关 键 词:分数;应用题;单位“1”;不变量Abstract: fraction word problems fraction multiplication mainly refers to the emergen

2、ce of significant expansion of word problems. Teaching fraction word problems, often find out the unit to 1, and to determine the unit of 1 is known or unknown to lead. Find a unit 1 identifies the general approach is based on some of the words to determine. However, in some of the problems encounte

3、red in the specific teaching methods with the general difficulties that remain, are given the appropriate measures to solve the problem. Keywords: score; word problems; unit 1; invariant 1 分数应用题与单位“1”分数百分数应用题在日常生产和生活中的作用非常广泛,是小学数学的重要内容,也是小学数学教学中的难点。因为分数百分数应用题比较抽象,学生理解起来有一定的难度,部分学生不是真正地理解,而是生硬地模仿,死搬硬

4、套。究其原因,都是方法不当。其实,分数百分数应用题并不可怕,抓住关键内容,认真分析,是有一定规律可遵循的。能否准确找到单位“1”,是分数应用题教学成败的关键。那什么是单位“1”呢?单位“1”不仅可以代表自然数1,代表一个物体、一个图形、一个计量单位,还可以表示由一群物体组成的一个整体如:一堆苹果,一盒粉笔,一个班的人数,一个月的生产任务,一项工作等等。在应用题中至少有两个量,而那个作为参照的量就是单位“1”,也就是和谁比,谁就是单位“1”。以往我在教学时,让学生根据一些标识性的词来找,如“是”、“占”、“比”字后面的数量是单位“1”。但遇到“甲数的8/15相当于乙数”或者其他没有“是”“占”“

5、比”字的句子时,学生就出现很多错误,教学产生了“负迁移”。2 分数应用题单位“1”的新教法 数学课程标准指出 “有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践。自主探索与合作交流是学生学习数学的重要方式。”根据这理念,后来我在教单位“1”时。注重从以下几方面入手,收到了较好的教学效果。2.1 立足根本意义 单位“1”与分数的意义紧密相连,为为此我先让学生复习分数的意义:把单位1平均分成若干份,表示这样一份或几分的数,叫分数。单位“1”可以是一个物体,一个计数单位,也可以是许多物体组成一个整体。从而理解把谁平均分,谁就是单位“1”。如“养殖场买来鸡和鸭共150只,其中鸡占3/4,鸡有多少只

6、?”我先引导学生动手画图,再分析“鸡有34”、就是指把150指鸡和鸭平均分成4份鸡占3份。要把150只鸡和鸭平均分,所以“150只鸡和鸭”是单位“1”。2.2 关系转化统一2.2.1 抓联系量统一单位“1” 题目中涉及到三个或三个以上的量,其中有一个量跟其他每个量都有联系,称为联系量。解题时,可抓住联系量,以联系量为单位“1”转化关系句式。刘文中的例1(题略)涉及到科技书、文艺书、故事书三个量,其中文艺书既与故事书有关系,又与科技书有关系,是个联系量。因此,只要把“文艺书的本数比科技书的本数少15转化为“科技书的本数是文艺书的1(115)=54”,那么34和54这两个分率都统一成文艺书的,就能

7、分别求出三种书的本数。 2.2.2. 抓不变量统一单位“1”有一些分数应用题,虽然有“是、比、占、相当于”这样的字眼,但如果以这些字眼以后的量为单位“1”,那么解起应用题来就困难了,在这种情况下就要找一下不变量,以这个不变量为单位“1”,问题就会迎刃而解。例如:六(1)班男生人数占全班人数的3/5,转走8名男生后,男生人数占全班人数的2/5,原来全班有多少人?分析:在这道题中, “占”字后面的是全班人数,而全班人数前后发生了变化,如果以全班人数作为单位“1”,这道题就难解了。究竟以哪一个为单位“1”呢?我们看,题中有3个量:男生、女生和全班人数。那么其中哪一个量没有变化呢?是女生人数,那么就以

8、女生人数为单位“1”。原来“男生人数占全班人数的”,也就是男生人数是女生人数的,转走8名男生后,“男生人数占全班人数的”,也就是男生人数是女生人数的。那么这两个分率差对应的就是转走的8名男生,所以可以列式为8( 13/5)20(名),式子中分率对应的单位“1”是女生的人数,所以求出的20名是女生的人数。题中要求全班的人数,而原来女生的人数占全班的(13/5),所以列式20(13/5)50(名)。又如:六(1)班同学参加课外小组活动,原来美术小组的人数是科技小组的人数的2/3,后来又有5名同学从科技小组转入美术小组,这时美术小组的人数是科技小组的人数的2/5,问科技小组和美术小组共有多少人?分析

9、:在这道题中,“是”字后面是科技小组的人数,但是科技小组的人数前后发生了变化,所以不能作为单位“1”。那么应当以哪个量为单位“1”呢?在这道题中有三个量:科技小组的人数、美术小组的人数、美术小组和科技小组共有的人数。哪一个量前后没有变化呢?是美术小组和科技小组共有的人数,所以就以美术小组和科技小组共有的人数为单位“1”。原来美术小组的人数是科技小组的人数的2/3,也就是美术小组的人数是美术小组和科技小组共有的人数的2(23)2/5,有5名同学从科技小组转入美术小组后,美术小组的人数是科技小组的人数的3/2,也就是美术小组的人数是美术小组和科技小组共有的人数的3(32)3/5,前后两个分率的差对

10、应的就是从科技小组转入美术小组的这5名同学。所以可以列式为5(3/52/5)25(名)。因为式子中分率对应的单位“1”是美术小组和科技小组共有的人数,所以求出的结果就是美术小组和科技小组共有的人数。2.3 比较分析推理如教材第126页第5题:2000年末,一个城市城乡储蓄存款余额达147亿元,比1999年末 增加32亿元,增长百分之几?学生对这一类题目的理解有较大难度,不容易找到单位“”。我先让学生找出2000年末、1999年末城乡储存余额,之后让学生讨论“什么情况下会出现“增长”一词”。学生在交流中逐渐理解,由少变多,叫增长。增长百分之几就是求增长的数量占原有(较少)数量的百分之几。再进一步

11、理解到求由多变少叫减少,求减少百分之几,就是求减少的数量占原有(较多)数量的百分之几。学生也就逐步总结出:在“谁”的基础上变化,“谁”一般就是单位“1”。这样,通过比较数量,分析问题,达到了理解题意、找准单位“1”的目的。2.4 挖掘隐蔽理解单位“1”的量,有时在题目中是明显的,有时要从题目中去找出隐含的单位“1”。这就需要正确理解题意,分清那是单位“1”。如:王庄栽树360棵,比张庄多栽1/4,比张庄多栽树多少棵?这里如果理解不好,就会把王庄栽树的棵数看作单位“1”,而实际上是张庄栽树的棵数为单位“1”,要求王庄比张庄多载多少棵?必须知道张庄栽树多少棵。张庄栽树的棵数看作是单位“1”的量,王

12、庄栽树的棵数相当于张庄的(1+1/4)换句话说,张庄栽树棵数的(1+1/4)就是王庄栽树棵数360棵。根据这一等量关系,求出王庄比张庄多栽树多少棵。2.5 定向训练扩句 分数应用题有许多题型中一些关键的条件或问题往往省略了其中的句子成分, 导致学生理解困难。我经常利用教材资源进行扩句训练,这样学生就能够很快地从中找到隐含的单位“1”,从而达到顺利解题的目的。如广州平均年日照为1608小时,北京年日照时间比广州多1/2,北京年日照时间大约多少时间?(人教版六年级上册第26页)广州平均年日照比北京年日照多1/2。北京年日照比广州平均年日照多多少小时?广州比北京年日照少多少小时?此题就可让学生说出“

13、北京年日照时间比广州多1/2”的完整意思是北京年日照时间比广州平均年日照多,多了广州平均年日照的1/2。也就是说,把广州平均年日照平均分成2份,北京年日照时间比广州多1份,广州平均年日照是单位“”。又如“一个乡去年原计划造林公顷,实际造林公顷,实际造林比原计划多百分之几?”此题就可让学生把问题扩写成“实际造林比原计划多的公顷数占原计划的百分之几”。这样,就能很快找到单位“”,并顺利解题。在训练过程中,学生通过扩句自主探索,找到隐含的单位“”,在充分的体验中,掌握了解题方法。 2.6 逆向思维倒数小学生喜欢顺向思维,不善于转换思维角度,因此倒数法,就是指导学生转换思维角度进行逆向思维。如:在已知

14、a是b的几分之几,求b是a的几分之几时可采用倒数法。假设:a是b 的4/5求b是a的几分之几?条件中b是单位1,要转化成为单位1可以这样想,因为a/b=4/5,所以 b/a=5/4 。这样让学生进行逆向思维的训练养成转换思维角度思考的好习惯,培养思维的灵活性。分数应用题的种类多种多样,但万变不离其中,内在的规律是不会改变的。如果学生在解答分数应用题时能按照上面介绍的方法去分析、思考,再结合线段图,做到具体问题具体分析,解题能力一定会有很大的提高。因此,在教学中,我们要引导学生灵活运用,通过这些简便的方法让学生对分数应用题有更深刻的理解形成自己的解题技能技巧。参考文献:1 骆琦颖.探索小学分数教学的方法J教学研究,总第61期,2009.22 董曙光.小学分数大小比较方法J素质教育,总第84期,2008.63 何友珍,孙晓春.小学数学分数应用题教学之我见J教育革新,第3期,20084 冯虹,王妍.小学分数应用题解题研究J天津教育,第10期,20045 陈忠尧.巧练是学习数学的“金钥匙”浅谈小学分数应用题训练三部曲J素质教育论坛,总第62期,2007.7

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服