ImageVerifierCode 换一换
格式:DOC , 页数:4 ,大小:54.96KB ,
资源ID:8095388      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/8095388.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【pc****0】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【pc****0】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(基础知识:初中数学几何定理大全.doc)为本站上传会员【pc****0】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

基础知识:初中数学几何定理大全.doc

1、 初中几何定理一、公理(不需证明)1、两直线被第三条直线所截,如果同位角相等,那么这两条直线平行; 2、两条平行线被第三条直线所截,同位角相等; 3、两边和夹角对应相等的两个三角形全等; (SAS)4、角及其夹边对应相等的两个三角形全等; (ASA)5、三边对应相等的两个三角形全等; (SSS)6、全等三角形的对应边相等,对应角相等. 7、线段公理:两点之间,线段最短。8、直线公理:过两点有且只有一条直线。9、平行公理:过直线外一点有且只有一条直线与已知直线平行10、垂直性质:经过直线外或直线上一点,有且只有一条直线与已知直线垂直以下对初中阶段所学的公理、定理进行分类:一、直线与角1、两点之间

2、,线段最短。 2、经过两点有一条直线,并且只有一条直线。3、同角或等角的补角相等,同角或等角的余角相等。 4、对顶角相等二、平行与垂直1、经过直线外或直线上一点,有且只有一条直线与已知直线垂直。2、经过已知直线外一点,有且只有一条直线与已知直线平行。3、连接直线外一点与直线上各点的所有线段中,垂线段最短。4、夹在两平行线间的平行线段相等5、平行线的判定:(1)同位角相等,两直线平行; (2)内错角相等,两直线平行;(3)同旁内角互补,两直线平行; (4)垂直于同一条直线的两条的直线互相平行.(5)如果两条直线都和第三条直线平行,那么这两条直线也平行 6、平行线的性质:(1)两直线平行,同位角相

3、等。 (2)两直线平行,内错角相等。 (3)两直线平行,同旁内角互补。三、角平分线、垂直平分线1、角平分线的性质:角平分线上的点到这个角的两边的距离相等.2、角平分线的判定:到一个角的两边距离相等的点在这个角的平分线上.3、线段垂直平分线的性质:线段的垂直平分线上的点到这条线段的两个端点的距离相等.4、线段垂直平分线的判定:到一条线段的两个端点的距离相等的点,在这条线段的垂直平分线上五、三角形: (一)一般性质1、三角形内角和定理:三角形的内角和等于1802、三角形外角的性质:三角形的一个外角等于与它不相邻的两个内角的和;三角形的一个外角大于任何一个与它不相邻的内角; 三角形的外角和等于360

4、3、三边关系:(1)两边之和大于第三边; (2)两边之差小于第三边4、三角形中位线定理: 三角形的中位线平行于第三边,并且等于第三边的一半5、三角形的三边的垂直平分线交于一点(外心), 这点到三个顶点的距离(外接圆半径)相等。6、三角形的三条角平分线交于一点(内心),这点到三边的距离(内切圆半径)相等。(二)特殊性质:7、等腰三角形、等边三角形(1)等腰三角形的两个底角相等(简写成“等边对等角”)(2)如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”)(3)“三线合一”定理:等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合(4)等边三角形的三个内角都相等,并

5、且每一个内角都等于60(5)三个角都相等的三角形是等边三角形。(6)有一个角是60的等腰三角形是等边三角形8、直角三角形:(1)直角三角形的两个锐角互余;(2)勾股定理:直角三角形两直角边的平方和等于斜边的平方;(3)勾股逆定理:如果一个三角形的一条边的平方等于另外两条边的平方和,那么这个三角形是直角三角形.(4)直角三角形斜边上的中线等于斜边的一半.(5)在直角三角形中,如果一个锐角等于30,那么它所对的直角边等于斜边的一半.(6)三角形一边的中线等于这边的一半,这个三角形是直角三角形。四、相似形与全等形9、全等多边形的对应边、对应角分别相等.10、全等三角形的判定: (1)两个三角形的三条

6、边分别对应相等(SSS.).(2)两个三角形有两边及其夹角分别对应相等(SAS.)(3)两个三角形的两个角及其夹边分别对应相等(ASA).(4)有两个角及其中一个角的对边分别对应相等(AAS.)(5)两个直角三角形的斜边及一条直角边分别对应相等(H.L.)11、相似三角形的判定:(类似于全等判定)(1)平行于三角形的一边的直线和其他两边相交所构成的三角形与原三角形相似(2)如果一个三角形的两角分别与另一个三角形的两角对应相等(3)如果一个三角形的两条边与另一个三角形的两条边对应成比例,并且夹角相等(4)如果一个三角形的三条边和另一个三角形的三条边对应成比例12、相似多边形的判定:对应边成比例且

7、对应角相等13、相似的性质:对应边、周长、对应线段的比均等于相似比,面积比等于相似比的平方五、四边形1、多边形中的定理: (1)四边形的内角和为360 (2)N边形的内角和:( n2)180. (3)任意多边形的外角和都为3602、平行四边形的性质:(1)平行四边形的对边平行且相等; (2)平行四边形的对角相等; (3)平行四边形的对角线互相平分。3、平行四边形的判定: (1)两组对边分别平行的四边形是平行四边形; (2)一组对边平行且相等的四边形是平行四边形;(3)两组对边分别相等的四边形是平行四边形; (4)两组对角分别相等的四边形是平行四边形;(5)对角线互相平分的四边形是平行四边形.4

8、、矩形的性质:(1)具有平行四边形的所有性质 (2)矩形的四个角都是直角; (3)矩形的对角线相等且互相平分.5、矩形的判定: (1)有一个角是直角的平行四边形是矩形。 (2)有三个角是直角的四边形是矩形. (3)对角线相等的平行四边形是矩形。6、菱形的性质: (1)具有平行四边形的所有性质(2)菱形的四条边都相等; (3)菱形的对角线互相垂直平分,并且每一条对角线平分一组对角.7、菱形的判定:(1)四条边相等的四边形是菱形.(2)一组邻边相等的平行四边形是菱形。 (3)对角线互相垂直的平行四边形是菱形。8、正方形的性质:(1)具有矩形、菱形的所有性质 (2)正方形的四个角都是直角;(3)正方

9、形的四条边都相等; (4)正方形的两条对角线相等,且互相垂直平分,每一条对角线平分一组对角.9、正方形的判定:(证明既是矩形又是菱形)(1)有一个角是直角的菱形是正方形; (2)有一组邻边相等的矩形是正方形.(3)对角线相等的菱形是正方形 (4)对角线互相垂直的矩形是正方形六、图形的变化(轴对称、平称、旋转)1、轴对称的性质:(1)如果图形关于某一直线对称,那么连结对应点的线段被对称轴垂直平分. (2)对应线段相等、对应角相等。2、平移:经过平移,图形上的每个点都沿着相同方向移动了相同的距离,平移后,新图形和原图形的形状和大小都没有发现改变,即它们是全等图形。即对应线段平行且相等,对应角相等,

10、对应点所连的线段平行且相等3、旋转对称:(1)图形中每一点都绕着旋转中心旋转了同样大小的角度 (2)对应点到旋转中心的距离相等; (3)对应线段相等、对应角相等4、中心对称: (1)具有旋转对称的所有性质 (2)中心对称图形上的每一对对应点所连成的线段都被对称中心平分七、圆1、 (1)圆是轴对称图形,任何一条直径所在直线都是它的对称轴。 (2)圆是中心对称图形,对称中心是圆心。2、垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧。3、垂径定理推论: 如果一条直线具有过圆心(直径)、垂直弦、平分弦、平分弦所对的劣弧(优弧)中知二得二。4、在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相

11、等。5、同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等6、圆周角定理: 一条弧所对的圆周角等于它所对的圆心角的一半(1)半圆或直径所对的圆周角都相等,都等于90(直角); (2)90的圆周角所对的弦是圆的直径.(3)在同圆或等圆中,同弧或等弧所对的圆周角相等,圆周角相等则所对的弧相等;7、不在同一条直线上的三个点确定一个圆.8、切线的判定(1)经过半径的外端且垂直于这条半径的直线是圆的切线.9、切线的性质(2)圆的切线垂直于过切点的直径。CABD10、切线长定理:从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分这两条切线的夹角附:扩展部分:1、等腰梯形的判定:ACBDE3(1)(1)同一条底边上的两个内角相等的梯形是等腰梯形; (2)两条对角线相等的梯形是等腰梯形.2、等腰梯形的性质:(1)等腰梯形的同一条底边上的两个内角相等; ACD3(2)B(2)等腰梯形的两条对角线相等.3、梯形的中位线平行于梯形的两底边,并且等于两底和的一半.4、射影定理:(1)AC2=ADAB (2)BC2=BDAB (3)CD2=ADBD5、相交弦定理:(1)如图(1)有:AEBE=CEDE(2)如图(2),AB是直径,CDAB ,则:CD2=ADBD

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服