ImageVerifierCode 换一换
格式:DOC , 页数:9 ,大小:338KB ,
资源ID:8042750      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/8042750.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【仙人****88】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【仙人****88】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(【创新方案】2013年高考数学一轮复习-第二篇-函数与基本初等函数Ⅰ第4讲-指数与指数函数教案-理-新人教版.doc)为本站上传会员【仙人****88】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

【创新方案】2013年高考数学一轮复习-第二篇-函数与基本初等函数Ⅰ第4讲-指数与指数函数教案-理-新人教版.doc

1、第4讲指数与指数函数【2013年高考会这样考】1考查指数函数的图象与性质及其应用2以指数与指数函数为知识载体,考查指数的运算和函数图象的应用3以指数或指数型函数为命题背景,重点考查参数的计算或比较大小【复习指导】1熟练掌握指数的运算是学好该部分知识的基础,较高的运算能力是高考得分的保障,所以熟练掌握这一基本技能是重中之重2本讲复习,还应结合具体实例了解指数函数的模型,利用图象掌握指数函数的性质重点解决:(1)指数幂的运算;(2)指数函数的图象与性质. 基础梳理1根式(1)根式的概念如果一个数的n次方等于a(n1且,nN*),那么这个数叫做a的n次方根也就是,若xna,则x叫做a的n次方根,其中

2、n1且nN*.式子叫做根式,这里n叫做根指数,a叫做被开方数(2)根式的性质当n为奇数时,正数的n次方根是一个正数,负数的n次方根是一个负数,这时,a的n次方根用符号表示当n为偶数时,正数的n次方根有两个,它们互为相反数,这时,正数的正的n次方根用符号表示,负的n次方根用符号表示正负两个n次方根可以合写为(a0)na.当n为奇数时,a;当n为偶数时, |a|.负数没有偶次方根2有理数指数幂(1)幂的有关概念正整数指数幂:anaa (nN*);零指数幂:a01(a0);负整数指数幂:ap(a0,pN*);正分数指数幂:a(a0,m、n N*,且n1);负分数指数幂:a(a0,m、nN*且n1)0

3、的正分数指数幂等于0,0的负分数指数幂没有意义(2)有理数指数幂的性质arasars(a0,r、sQ)(ar)sars(a0,r、sQ)(ab)rarbr(a0,b0,rQ)3指数函数的图象与性质yaxa10a1图象定义域R值域(0,)性质过定点(0,1)x0时,0y1x0时,y1.在(,)上是减函数当x0时,0y1;当x0时,y1;在(,)上是增函数一个关系分数指数幂与根式的关系根式与分数指数幂的实质是相同的,分数指数幂与根式可以相互转化,通常利用分数指数幂进行根式的化简运算两个防范(1)指数函数的单调性是由底数a的大小决定的,因此解题时通常对底数a按:0a1和a1进行分类讨论(2)换元时注

4、意换元后“新元”的范围三个关键点画指数函数yax(a0,且a1)的图象,应抓住三个关键点:(1,a),(0,1),.双基自测1(2011山东)若点(a,9)在函数y3x的图象上,则tan的值为() A0 B. C1 D.解析由题意有3a9,则a2,tan tan .答案D2(2012郴州五校联考)函数f(x)2|x1|的图象是()解析f(x)故选B.答案B3若函数f(x),则该函数在(,)上是()A单调递减无最小值 B单调递减有最小值C单调递增无最大值 D单调递增有最大值解析设yf(x),t2x1,则y,t2x1,x(,)t2x1在(,)上递增,值域为(1,)因此y在(1,)上递减,值域为(0

5、,1)答案A4(2011天津)已知a5log23.4,b5log43.6,clog30.3,则()Aabc BbacCacb Dcab解析clog30.35log30.35log3,log23.4log221,log43.6log441,log3log331,又log23.4log2log3 ,log2 3.4log3 log4 3.6又y5x是增函数,acb.答案C5(2012天津一中月考)已知aa3,则aa1_;a2a2_.解析由已知条件(aa)29.整理得:aa17又(aa1)249,因此a2a247.答案747考向一指数幂的化简与求值【例1】化简下列各式(其中各字母均为正数)(1);(

6、2)ab2(3ab1)(4ab3).审题视点 熟记有理数指数幂的运算性质是化简的关键解(1)原式 ab.(2)原式ab3(4ab3) ab3 ab . 化简结果要求(1)若题目以根式形式给出,则结果用根式表示;(2)若题目以分数指数幂的形式给出,则结果用分数指数幂表示;(3)结果不能同时含有根号和分数指数幂,也不能既有分母又有负指数幂【训练1】 计算:(1)0.02720;(2).解(1)原式(1)221 49145.(2)原式aabba0b0.考向二指数函数的性质【例2】已知函数f(x)x3(a0且a1)(1)求函数f(x)的定义域;(2)讨论函数f(x)的奇偶性;(3)求a的取值范围,使f

7、(x)0在定义域上恒成立审题视点 对解析式较复杂的函数判断其奇偶性要适当变形;恒成立问题可通过求最值解决解(1)由于ax10,且ax1,所以x0.函数f(x)的定义域为x|xR,且x0(2)对于定义域内任意x,有f(x)(x)3 (x)3(x)3 x3f(x),f(x)是偶函数(3)当a1时,对x0,由指数函数的性质知ax1,ax10,0.又x0时,x30,x30,即当x0时,f(x)0.又由(2)知f(x)为偶函数,即f(x)f(x),则当x0时,x0,有f(x)f(x)0成立综上可知,当a1时,f(x)0在定义域上恒成立当0a1时,f(x).当x0时,1ax0,ax10,ax10,x30,

8、此时f(x)0,不满足题意;当x0时,x0,f(x)f(x)0,也不满足题意综上可知,所求a的取值范围是a1. (1)判断此类函数的奇偶性,常需要对所给式子变形,以达到所需要的形式,另外,还可利用f(x)f(x),来判断(2)将不等式恒成立问题转化为求函数值域问题,是解决恒成立问题的常用方法【训练2】 设f(x)是定义在R上的函数(1)f(x)可能是奇函数吗?(2)若f(x)是偶函数,试研究其在(0,)的单调性解(1)假设f(x)是奇函数,由于定义域为R,f(x)f(x),即,整理得(exex)0,即a0,即a210显然无解f(x)不可能是奇函数(2)因为f(x)是偶函数,所以f(x)f(x)

9、,即,整理得(exex)0,又对任意xR都成立,有a0,得a1.当a1时,f(x)exex,以下讨论其单调性,任取x1,x2(0,)且x1x2,则f(x1)f(x2)ex1ex1 ex2ex2 ,x1,x2(0,)且x1x2,ex1x21,ex1ex20,ex1x210,f(x1)f(x2)0,即f(x1)f(x2),函数f(x),当a1时在(0,)为增函数,同理,当a1时,f(x)在(0,)为减函数考向三指数函数图象的应用【例3】(2009山东)函数y的图象大致为()审题视点 函数图象的判断要充分利用函数的性质,如奇偶性、单调性解析y1,当x0时,e2x10且随着x的增大而增大,故y11且随

10、着x的增大而减小,即函数y在(0,)上恒大于1且单调递减,又函数y是奇函数,故选A.答案A 利用指数函数的图象和性质可研究复合函数的图象和性质,比如:函数y,y,ylg(10x1)等【训练3】 已知方程10x10x,lg xx10的实数解分别为和,则的值是_解析作函数yf(x)10x,yg(x)lg x,yh(x)10x的图象如图所示,由于yf(x)与yg(x)互为反函数,它们的图象是关于直线yx对称的又直线yh(x)与yx垂直,yf(x)与yh(x)的交点A和yg(x)与yh(x)的交点B是关于直线yx对称的而yx与yh(x)的交点为(5,5)又方程10x10x的解为A点横坐标,同理,为B点

11、横坐标5,即10.答案10难点突破3如何求解新情景下指数函数的问题高考中对指数函数的考查,往往突出新概念、新定义、新情景中的问题,题目除最基本问题外,注重考查一些小、巧、活的问题,突出考查思维能力和化归等数学思想一、新情景下求指数型函数的最值问题的解法【示例】 (2011福建五市模拟)设函数yf(x)在(,)内有定义对于给定的正数K,定义函数fK(x)取函数f(x)2xex,若对任意的x(,),恒有fK(x)f(x),则K的最大值为_二、新情景下求与指数型函数有关的恒成立问题的解法【示例】 若f1(x)3|x1|,f2(x)23|xa|,xR,且f(x)则f(x)f1(x)对所有实数x成立,则实数a的取值范围是_

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服