1、,8.6,空间向量及其运算,1/70,基础知识自主学习,课时作业,题型分类深度剖析,内容索引,2/70,基础知识自主学习,3/70,1.,空间向量相关概念,知识梳理,名称,概念,表示,零向量,模为向量,0,单位向量,长度(模)为 向量,相等向量,方向 且模 向量,a,b,相反向量,方向 且模 向量,a相反向量为a,共线向量,表示空间向量有向线段所在直线相互向量,a,b,共面向量,平行于同一个 向量,0,1,相等,相同,相反,相等,平行或重合,平面,4/70,2.,空间向量中相关定理,(1),共线向量定理,空间两个向量,a,与,b,(,b,0,),共线充要条件是存在实数,,使得,a,b,.,(2
2、),共面向量定理,共面向量定理向量表示式:,p,,其中,x,,,y,R,,,a,,,b,为不共线向量,.,(3),空间向量基本定理,假如三个向量,a,,,b,,,c,不共面,那么对空间任一向量,p,,存在有序实数组,x,,,y,,,z,,使得,p,,,a,,,b,,,c,叫做空间一个基底,.,x,a,y,b,x,a,y,b,z,c,5/70,3.,空间向量数量积及运算律,(1),数量积及相关概念,两向量夹角,已知两个非零向量,a,,,b,,在空间任取一点,O,,作,a,,,b,,则,AOB,叫做向量,a,,,b,夹角,记作,,其范围是,若,a,,,b,,则称,a,与,b,,记作,a,b,.,两
3、向量数量积,已知空间两个非零向量,a,,,b,,则,叫做向量,a,,,b,数量积,记作,,即,a,b,.,a,,,b,0,a,,,b,相互垂直,|,a,|,b,|cos,a,,,b,a,b,|,a,|,b,|cos,a,,,b,6/70,(2),空间向量数量积运算律,结合律:,(,a,),b,;,交换律:,a,b,;,分配律:,a,(,b,c,),.,4.,空间向量坐标表示及其应用,设,a,(,a,1,,,a,2,,,a,3,),,,b,(,b,1,,,b,2,,,b,3,).,(,a,b,),b,a,a,b,a,c,向量表示,坐标表示,数量积,ab,a,1,b,1,a,2,b,2,a,3,b
4、,3,7/70,共线,a,b,(,b,0,,,R,),垂直,a,b,0(,a,0,,,b,0,),模,|,a,|,夹角,a,,,b,(,a,0,,,b,0,),cos,a,,,b,a,1,b,1,,,a,2,b,2,,,a,3,b,3,a,1,b,1,a,2,b,2,a,3,b,3,0,8/70,1.,向量三点共线定理:在平面中,A,、,B,、,C,三点共线充要条件是:,x,y,(,其中,x,y,1),,,O,为平面内任意一点,.,2.,向量四点共面定理:在空间中,P,、,A,、,B,、,C,四点共面充要条件是:,x,y,z,(,其中,x,y,z,1),,,O,为空间中任意一点,.,知识拓展,
5、几何画板展示,几何画板展示,9/70,判断以下结论是否正确,(,请在括号中打,“”,或,“”,),(1),空间中任意两非零向量,a,,,b,共面,.(,),(2),在向量数量积运算中,(,a,b,),c,a,(,b,c,).(,),(3),对于非零向量,b,,由,a,b,b,c,,则,a,c,.(,),(4),两向量夹角范围与两异面直线所成角范围相同,.(,),思索辨析,10/70,1.,已知正四面体,ABCD,棱长为,a,,点,E,,,F,分别是,BC,,,AD,中点,则,值为,考点自测,答案,解析,则,|,a,|,|,b,|,|,c,|,a,,且,a,,,b,,,c,三向量两两夹角为,60
6、.,11/70,2.(,大连模拟,),向量,a,(,2,,,3,1),,,b,(2,0,4),,,c,(,4,,,6,2),,以下结论正确是,A.,a,b,,,a,c,B.,a,b,,,a,c,C.,a,c,,,a,b,D.,以上都不对,答案,解析,因为,c,(,4,,,6,2),2(,2,,,3,1),2,a,,,所以,a,c,.,又,a,b,(,2),2,(,3),0,1,4,0,,,所以,a,b,.,故选,C.,12/70,3.,与向量,(,3,,,4,5),共线单位向量是,_.,答案,解析,因为与向量,a,共线单位向量是,,又因为向量,(,3,,,4,5),模为,,所以与向量,(,3,
7、,,4,5),共线单位向量是,(,3,,,4,,,5),(,3,,,4,5).,13/70,答案,解析,14/70,5.(,教材改编,),正四面体,ABCD,棱长为,2,,,E,,,F,分别为,BC,,,AD,中点,则,EF,长为,_.,答案,解析,1,2,2,2,1,2,2(1,2,cos 120,0,2,1,cos 120),2,,,15/70,题型分类深度剖析,16/70,题型一空间向量线性运算,例,1,(1),如图所表示,在长方体,ABCD,A,1,B,1,C,1,D,1,中,,O,为,AC,中点,.,答案,解析,17/70,解答,18/70,思维升华,用已知向量表示某一向量方法,用已
8、知向量来表示未知向量,一定要结合图形,以图形为指导是解题关键,.,要正确了解向量加法、减法与数乘运算几何意义,.,首尾相接若干向量之和,等于由起始向量始点指向末尾向量终点向量,.,在立体几何中三角形法则、平行四边形法则依然成立,.,19/70,跟踪训练,1,(,青岛模拟,),如图所表示,在空间几何体,ABCD,A,1,B,1,C,1,D,1,中,各面为平行四边形,设,a,,,b,,,c,,,M,,,N,,,P,分别是,AA,1,,,BC,,,C,1,D,1,中点,试用,a,,,b,,,c,表示以下各向量:,解答,因为,P,是,C,1,D,1,中点,,20/70,解答,21/70,因为,M,是,
9、AA,1,中点,,22/70,题型二共线定理、共面定理应用,例,2,(,天津模拟,),如图,,已知,E,,,F,,,G,,,H,分别是空间四边形,ABCD,边,AB,,,BC,,,CD,,,DA,中点,.,(1),求证:,E,,,F,,,G,,,H,四点共面;,证实,连接,BG,,,由共面向量定理推论知,E,,,F,,,G,,,H,四点共面,.,23/70,(2),求证:,BD,平面,EFGH,;,证实,所以,EH,BD,.,又,EH,平面,EFGH,,,BD,平面,EFGH,,,所以,BD,平面,EFGH,.,24/70,证实,25/70,找一点,O,,并连接,OM,,,OA,,,OB,,,
10、OC,,,OD,,,OE,,,OG,.,所以四边形,EFGH,是平行四边形,,所以,EG,,,FH,交于一点,M,且被,M,平分,.,26/70,思维升华,(1),证实空间三点,P,,,A,,,B,共线方法,27/70,(2),证实空间四点,P,,,M,,,A,,,B,共面方法,28/70,跟踪训练,2,已知,A,,,B,,,C,三点不共线,对平面,ABC,外任一点,O,,若点,M,满足,.,(1),判断,三个向量是否共面;,解答,29/70,(2),判断点,M,是否在平面,ABC,内,.,证实,M,,,A,,,B,,,C,四点共面,.,从而点,M,在平面,ABC,内,.,30/70,题型三空
11、间向量数量积应用,例,3,(,济南,月考,),如图,,已知平行六面体,ABCD,A,1,B,1,C,1,D,1,中,底面,ABCD,是边长为,1,正方形,,AA,1,2,,,A,1,AB,A,1,AD,120.,(1),求线段,AC,1,长;,解答,31/70,则,|,a,|,|,b,|,1,,,|,c,|,2,,,a,b,0,,,c,a,c,b,2,1,cos 120,1.,32/70,(2),求异面直线,AC,1,与,A,1,D,所成角余弦值;,解答,33/70,设异面直线,AC,1,与,A,1,D,所成角为,,,34/70,(3),求证:,AA,1,BD,.,证实,35/70,思维升华,
12、(1),利用向量数量积可证实线段垂直关系,也能够利用垂直关系,经过向量共线确定点在线段上位置;,(2),利用夹角公式,能够求异面直线所成角,也能够求二面角;,(3),能够经过,|,a,|,,将向量长度问题转化为向量数量积问题求解,.,36/70,跟踪训练,3,如图,在平行六面体,ABCD,A,1,B,1,C,1,D,1,中,以顶点,A,为端点三条棱长度都为,1,,且两两夹角为,60.,(1),求,长;,解答,则,|,a,|,|,b,|,|,c,|,1,,,a,,,b,b,,,c,c,,,a,60,,,37/70,解答,b,2,a,2,a,c,b,c,1,,,38/70,典例,(12,分,),如
13、图,已知直三棱柱,ABC,A,1,B,1,C,1,,在底面,ABC,中,,CA,CB,1,,,BCA,90,,棱,AA,1,2,,,M,,,N,分别是,A,1,B,1,,,A,1,A,中点,.,坐标法在立体几何中应用,思想与方法系列,18,规范解答,思想方法指导,39/70,利用向量处理立体几何问题时,首先要将几何问题转化成向量问题,经过建立坐标系利用向量坐标进行求解,.,返回,40/70,(1),解,如图,建立空间直角坐标系,.,依题意得,B,(0,1,0),,,N,(1,0,1),,,(2),解,依题意得,A,1,(1,0,2),,,B,(0,1,0),,,C,(0,0,0),,,B,1,
14、(0,,,1,2).,41/70,(3),证实,依题意得,C,1,(0,0,2),,,返回,42/70,课时作业,43/70,1.,在以下命题中:,若向量,a,,,b,共线,则向量,a,,,b,所在直线平行;,若向量,a,,,b,所在直线为异面直线,则向量,a,,,b,一定不共面;,若三个向量,a,,,b,,,c,两两共面,则向量,a,,,b,,,c,共面;,已知空间三个向量,a,,,b,,,c,,则对于空间任意一个向量,p,总存在实数,x,,,y,,,z,使得,p,x,a,y,b,z,c,.,其中正确命题个数是,A.0 B.1 C.2 D.3,1,2,3,4,5,6,7,8,9,10,11,
15、12,13,14,答案,解析,44/70,a,与,b,共线,,a,,,b,所在直线也可能重合,故,不正确;,依据自由向量意义知,空间任意两向量,a,,,b,都共面,故,不正确;,三个向量,a,,,b,,,c,中任意两个一定共面,但它们三个却不一定共面,故,不正确;,只有当,a,,,b,,,c,不共面时,空间任意一向量,p,才能表示为,p,x,a,y,b,z,c,,故,不正确,综上可知四个命题中正确个数为,0,,故选,A.,1,2,3,4,5,6,7,8,9,10,11,12,13,14,45/70,1,2,3,4,5,6,7,8,9,10,11,12,13,14,2.(,郑州,调研,),已知,
16、a,(2,1,,,3),,,b,(,1,2,3),,,c,(7,6,,,),,若,a,,,b,,,c,三向量共面,则,等于,A.9 B.,9 C.,3 D.3,答案,解析,由题意知,c,x,a,y,b,,,即,(7,6,,,),x,(2,1,,,3),y,(,1,2,3),,,46/70,1,2,3,4,5,6,7,8,9,10,11,12,13,14,3.,已知,a,(,2,1,3),,,b,(,1,2,1),,若,a,(,a,b,),,则实数,值为,答案,解析,由题意知,a,(,a,b,),0,,即,a,2,a,b,0,,,所以,14,7,0,,解得,2.,47/70,1,2,3,4,5,
17、6,7,8,9,10,11,12,13,14,4.,如图,在大小为,45,二面角,A,EF,D,中,四边形,ABFE,,,CDEF,都是边长为,1,正方形,则,B,,,D,两点间距离是,答案,解析,48/70,1,2,3,4,5,6,7,8,9,10,11,12,13,14,5.,已知,a,,,b,是异面直线,,A,,,B,a,,,C,,,D,b,,,AC,b,,,BD,b,且,AB,2,,,CD,1,,则异面直线,a,,,b,所成角等于,A.30 B.45 C.60 D.90,答案,解析,所以异面直线,a,,,b,所成角等于,60,,,故选,C.,49/70,1,2,3,4,5,6,7,8,
18、9,10,11,12,13,14,答案,解析,50/70,以,D,为原点建立如图所表示空间直角坐标系,Dxyz,,则,A,(,a,,,0,0),,,C,1,(0,,,a,,,a,),,,N,(,a,,,a,,,).,设,M,(,x,,,y,,,z,),,,(,x,a,,,y,,,z,),(,x,,,a,y,,,a,z,),,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,51/70,1,2,3,4,5,6,7,8,9,10,11,12,13,14,52/70,1,2,3,4,5,6,7,8,9,10,11,12,13,14,答案,解析,所以,CBD,为锐角,.,同理,BCD
19、,,,BDC,均为锐角,.,锐角,53/70,1,2,3,4,5,6,7,8,9,10,11,12,13,14,8.,设,O,ABC,是四面体,,G,1,是,ABC,重心,,G,是,OG,1,上一点,且,OG,3,GG,1,,若,,则,x,,,y,,,z,值分别为,_.,答案,解析,54/70,如图所表示,取,BC,中点,E,,连接,AE,.,1,2,3,4,5,6,7,8,9,10,11,12,13,14,55/70,1,2,3,4,5,6,7,8,9,10,11,12,13,14,9.(,合肥模拟,),已知,a,(,x,4,1),,,b,(,2,,,y,,,1),,,c,(3,,,2,,,
20、z,),,,a,b,,,b,c,,则,c,_.,答案,解析,(3,,,2,2),解得,x,2,,,y,4,,,此时,a,(2,4,1),,,b,(,2,,,4,,,1),,,又因为,b,c,,所以,b,c,0,,,即,6,8,z,0,,解得,z,2,,于是,c,(3,,,2,2).,56/70,其中正确序号是,_.,10.(,天津模拟,),已知,ABCD,A,1,B,1,C,1,D,1,为正方体,,答案,解析,1,2,3,4,5,6,7,8,9,10,11,12,13,14,57/70,1,2,3,4,5,6,7,8,9,10,11,12,13,14,58/70,1,2,3,4,5,6,7,8
21、,9,10,11,12,13,14,*11.,如图,在平行六面体,ABCD,A,1,B,1,C,1,D,1,中,点,M,,,P,,,Q,分别为棱,AB,,,CD,,,BC,中点,若平行六面体各棱长均相等,则,A,1,M,D,1,P,;,A,1,M,B,1,Q,;,A,1,M,平面,DCC,1,D,1,;,A,1,M,平面,D,1,PQB,1,.,以上正确说法个数为,_.,答案,解析,3,59/70,A,1,M,D,1,P,,由线面平行判定定理可知,,A,1,M,平面,DCC,1,D,1,,,A,1,M,平面,D,1,PQB,1,.,正确,.,1,2,3,4,5,6,7,8,9,10,11,12
22、,13,14,60/70,12.,如图所表示,已知空间四边形,ABCD,每条边和对角线长都等于,1,,点,E,,,F,,,G,分别是,AB,,,AD,,,CD,中点,计算:,解答,1,2,3,4,5,6,7,8,9,10,11,12,13,14,61/70,则,|,a,|,|,b,|,|,c,|,1,,,a,,,b,b,,,c,c,,,a,60,,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,62/70,解答,1,2,3,4,5,6,7,8,9,10,11,12,13,14,63/70,解答,(3),EG,长;,1,2,3,4,5,6,7,8,9,10,11,12,13,
23、14,64/70,1,2,3,4,5,6,7,8,9,10,11,12,13,14,解答,(4),异面直线,AG,与,CE,所成角余弦值,.,65/70,*13.(,沈阳模拟,),如图,在,直三棱柱,ABC,A,B,C,中,,AC,BC,AA,,,ACB,90,,,D,、,E,分别为,AB,、,BB,中点,.,(1),求证:,CE,A,D,;,证实,1,2,3,4,5,6,7,8,9,10,11,12,13,14,66/70,依据题意得,,|,a,|,|,b,|,|,c,|,,,且,ab,bc,ca,0,,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,67/70,1,2,3,4,5,6,7,8,9,10,11,12,13,14,(2),求异面直线,CE,与,AC,所成角余弦值,.,解答,68/70,解答,1,2,3,4,5,6,7,8,9,10,11,12,13,14,69/70,证实,(2),求证:,MN,平面,ABB,1,A,1,.,AB,1,平面,ABB,1,A,1,,,MN,平面,ABB,1,A,1,,,MN,平面,ABB,1,A,1,.,1,2,3,4,5,6,7,8,9,10,11,12,13,14,70/70,
©2010-2025 宁波自信网络信息技术有限公司 版权所有
客服电话:4008-655-100 投诉/维权电话:4009-655-100