ImageVerifierCode 换一换
格式:PPT , 页数:21 ,大小:1.61MB ,
资源ID:800665      下载积分:11 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/800665.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【可****】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【可****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(多元函数的极值与最值.ppt)为本站上传会员【可****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

多元函数的极值与最值.ppt

1、-1-第六节 多元函数的极值与最值一多元函数的极值二多元函数的最值三条件极值-2-一、多元函数的极值 定义定义:若函数若函数则称函数在该点取得则称函数在该点取得极大值极大值(极小值极小值).例如例如:在点在点(0,0)有极小值有极小值;在点在点(0,0)有极大值有极大值;在点在点(0,0)无极值无极值.极大值和极小值极大值和极小值统称为统称为极值极值,使函数取得极值的点称为使函数取得极值的点称为极值点极值点.的某邻域内有的某邻域内有-3-说明说明:使偏导数都为使偏导数都为 0 的点称为的点称为驻点驻点.例如例如,定理1(必要条件)函数函数偏导数偏导数,证证:据一元函数极值的必要条件可知定理结论

2、成立据一元函数极值的必要条件可知定理结论成立.取得极值取得极值,取得极值取得极值取得极值取得极值 但驻点不一定是极值点但驻点不一定是极值点.有驻点有驻点(0,0),但在该点不取极值但在该点不取极值.且在该点取得极值且在该点取得极值,则有则有存在存在故故-4-时时,具有极值具有极值定理2(充分条件)的某邻域内具有一阶和二阶连续偏导数的某邻域内具有一阶和二阶连续偏导数,且且令令则则:1)当当A0 时取极小值时取极小值.2)当当3)当当时时,没有极值没有极值.时时,不能确定不能确定,需另行讨论需另行讨论.若函数若函数-5-例1.求函数求函数解解:第一步第一步 求驻点求驻点.得驻点得驻点:(1,0),

3、(1,2),(3,0),(3,2).第二步第二步 判别判别.在点在点(1,0)处处为极小值为极小值;解方程组解方程组的极值的极值.求二阶偏导数求二阶偏导数-6-在点在点(3,0)处处不是极值不是极值;在点在点(3,2)处处为极大值为极大值.在点在点(1,2)处处不是极值不是极值;-7-例2.讨论函数及及是否取得极值是否取得极值.解解:在在(0,0)点邻域内的取值可能为点邻域内的取值可能为,因此因此 z(0,0)不是极值不是极值.因此因此为极小值为极小值.正正负负0在点在点(0,0)并且在并且在(0,0)有有 显然显然(0,0)都是它们的驻点都是它们的驻点,-8-二 多元函数的最值函数函数 f

4、在闭域上连续在闭域上连续函数函数 f 在闭域上可达到最值在闭域上可达到最值 最值可疑点最值可疑点 区域内的驻点区域内的驻点边界上的最值点边界上的最值点特别特别,在区域函数只有一个极值点在区域函数只有一个极值点P 时时,为极小为极小 值值为最小为最小 值值(大大)(大大)依据依据当区域内部最值存在当区域内部最值存在,且只有唯一的一个驻点且只有唯一的一个驻点P 时,时,则驻点一定是最值点。则驻点一定是最值点。经判别得经判别得-9-解解如图如图,-10-11-例4.解解:则水箱所用材料的面积为则水箱所用材料的面积为令令得驻点得驻点某厂要用铁板做一个体积为某厂要用铁板做一个体积为2根据实际问题可知最小

5、值在定义域内应存在根据实际问题可知最小值在定义域内应存在,的有盖长方体水的有盖长方体水问当长、宽、高各取怎样的尺寸时问当长、宽、高各取怎样的尺寸时,才能使用料最省才能使用料最省?因此可因此可断定此唯一驻点就是最小值点断定此唯一驻点就是最小值点.即当长、宽均为即当长、宽均为高为高为时时,水箱所用材料最省水箱所用材料最省.箱箱,设水箱长设水箱长,宽分别为宽分别为x,y m,则高为则高为-12-例5.有一宽为24cm 的长方形铁板,把它折起来做成把它折起来做成解解:设折起来的边长为设折起来的边长为 x cm,则断面面积则断面面积一个断面为等腰梯形的水槽一个断面为等腰梯形的水槽,倾角为倾角为 ,积最大

6、积最大.为为问怎样折法才能使断面面问怎样折法才能使断面面x24-13-令令解得解得:由题意知由题意知,最大值在定义域最大值在定义域D 内达到内达到,而在域而在域D 内只有内只有一个驻点一个驻点,故此点即为所求故此点即为所求.-14-三、条件极值极值问题极值问题无条件极值无条件极值:条条 件件 极极 值值:条件极值的求法条件极值的求法:方法方法1 代入法代入法.求一元函数求一元函数的无条件极值问题的无条件极值问题对自变量只有定义域限制对自变量只有定义域限制对自变量除定义域限制外对自变量除定义域限制外,还有其它条件限制还有其它条件限制例如例如,转转化化-15-方法2 拉格朗日乘数法.如方法如方法

7、1 所述所述,则问题等价于一元函数则问题等价于一元函数可确定隐函数可确定隐函数的极值问题的极值问题,极值点必满足极值点必满足设设 记记例如例如,故故 故有故有-16-引入辅助函数引入辅助函数辅助函数辅助函数F 称为称为拉格朗日拉格朗日(Lagrange)函数函数.利用拉格利用拉格极值点必满足极值点必满足则极值点满足则极值点满足:朗日函数求极值的方法称为朗日函数求极值的方法称为拉格朗日乘数法拉格朗日乘数法.因此因此函数函数在条件在条件下的极值点下的极值点一定是函数一定是函数的驻点。的驻点。-17-推广拉格朗日乘数法可推广到多个自变量和多个约束条件的情形拉格朗日乘数法可推广到多个自变量和多个约束条

8、件的情形.设设解方程组解方程组可得到条件极值的可疑点可得到条件极值的可疑点.例如例如,求函数求函数下的极值下的极值.在条件在条件-18-例6.要设计一个容量为要设计一个容量为则问题为求则问题为求x,y,令令解方程组解方程组解解:下水箱表面积下水箱表面积最小最小.z 使在条件使在条件水箱长、宽、高等于多少时所用材料最省?水箱长、宽、高等于多少时所用材料最省?的长方体开口水箱的长方体开口水箱,试问试问 设设 x,y,z 分别表示长、宽、高分别表示长、宽、高,-19-得唯一驻点得唯一驻点由题意可知合理的设计是存在的由题意可知合理的设计是存在的,长、宽为高的长、宽为高的 2 倍时,所用材料最省倍时,所

9、用材料最省.因此因此,当高为当高为思考思考:1)当水箱封闭时当水箱封闭时,长、宽、高的尺寸如何长、宽、高的尺寸如何?提示提示:利用对称性可知利用对称性可知,2)当开口水箱底部的造价为侧面的二倍时当开口水箱底部的造价为侧面的二倍时,欲使造价欲使造价最省最省,应如何设拉格朗日函数应如何设拉格朗日函数?长、宽、高尺寸如何长、宽、高尺寸如何?提示提示:长、宽、高尺寸相等长、宽、高尺寸相等.-20-例例7求原点到曲面求原点到曲面的最短距离。的最短距离。解解问题可以转化为求函数问题可以转化为求函数在条件在条件的最小值问题,的最小值问题,令令得驻点得驻点所以最短距离为所以最短距离为-21-例例8求原点到曲线求原点到曲线短最长距离。短最长距离。的最的最解解问题可以转化为求函数问题可以转化为求函数在条件在条件的最小最大值问题,的最小最大值问题,令令得驻点得驻点

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服