1、 轴对称最短距离问题专题 一.选择题(共12小题) 1.(2015•绥化)如图,在矩形ABCD中,AB=10,BC=5.若点M、N分别是线段AC,AB上的两个动点,则BM+MN的最小值为( ) A.10 B.8 C.5 D.6 2.(2015•南宁)如图,AB是⊙O的直径,AB=8,点M在⊙O上,∠MAB=20°,N是弧MB的中点,P是直径AB上的一动点.若MN=1,则△PMN周长的最小值为( ) A.4 B.5 C.6 D.7 3.(2015•内江)如图,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点
2、P,使PD+PE最小,则这个最小值为( ) A. B.2 C.2 D. 4.(2015•遵义)如图,四边形ABCD中,∠C=50°,∠B=∠D=90°,E、F分别是BC、DC上的点,当△AEF的周长最小时,∠EAF的度数为( ) A.50° B.60° C.70° D.80° 5.(2015•营口)如图,点P是∠AOB内任意一点,OP=5cm,点M和点N分别是射线OA和射线OB上的动点,△PMN周长的最小值是5cm,则∠AOB的度数是( ) A.25° B.30° C.35° D.40° 6.(2014•贵港)如图,在Rt△ABC中,∠ACB=9
3、0°,AC=6,BC=8,AD是∠BAC的平分线.若P,Q分别是AD和AC上的动点,则PC+PQ的最小值是( ) A. B.4 C. D.5 7.(2014•安顺)如图,MN是半径为1的⊙O的直径,点A在⊙O上,∠AMN=30°,点B为劣弧AN的中点.P是直径MN上一动点,则PA+PB的最小值为( ) A. B.1 C.2 D.2 8.(2014•鄂尔多斯)如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,D是AB上的动点,E是BC上的动点,则AE+DE的最小值为( ) A.3+2 B.10 C. D. 9.(2013•济宁)如图,在直角
4、坐标系中,点A、B的坐标分别为(1,4)和(3,0),点C是y轴上的一个动点,且A、B、C三点不在同一条直线上,当△ABC的周长最小时,点C的坐标是( ) A.(0,0) B.(0,1) C.(0,2) D.(0,3) 10.(2013•鄂尔多斯)如图,A和B两地在一条河的两岸,现要在河上造一座桥MN,使从A到B的路径AMNB最短的是(假定河的两岸是平行直线,桥要与河岸垂直)( ) A. B. C. D. 11.(2013•苏州)如图,在平面直角坐标系中,Rt△OAB的顶点A在x轴的正半轴上.顶点B的坐标为(3,),点C的坐标为(,0),点P为斜边OB上的一个动
5、点,则PA+PC的最小值为( ) A. B. C. D.2 12.(2012•黔西南州)如图,抛物线y=x2+bx﹣2与x轴交于A、B两点,与y交于C点,且A(﹣1,0),点M(m,0)是x轴上的一个动点,当MC+MD的值最小时,m的值是( ) A. B. C. D. 二.填空题(共16小题) 13.(2015•武汉)如图,∠AOB=30°,点M、N分别在边OA、OB上,且OM=1,ON=3,点P、Q分别在边OB、OA上,则MP+PQ+QN的最小值是 . 14.(2015•鄂州)如图,∠AOB=30°,点M、N分别是射线OA、OB上
6、的动点,OP平分∠AOB,且OP=6,当△PMN的周长取最小值时,四边形PMON的面积为 . 15.(2015•盘锦)如图,菱形ABCD的边长为2,∠DAB=60°,E为BC的中点,在对角线AC上存在一点P,使△PBE的周长最小,则△PBE的周长的最小值为 . 16.(2015•攀枝花)如图,在边长为2的等边△ABC中,D为BC的中点,E是AC边上一点,则BE+DE的最小值为 . 17.(2015•玉林)如图,已知正方形ABCD边长为3,点E在AB边上且BE=1,点P,Q分别是边BC,CD的动点(均不与顶点重合),当四边形AEP
7、Q的周长取最小值时,四边形AEPQ的面积是 . 18.(2015•安顺)如图,正方形ABCD的边长为4,E为BC上一点,BE=1,F为AB上一点,AF=2,P为AC上一点,则PF+PE的最小值为 . 19.(2014•资阳)如图,在边长为4的正方形ABCD中,E是AB边上的一点,且AE=3,点Q为对角线AC上的动点,则△BEQ周长的最小值为 . 20.(2014•东营)在⊙O中,AB是⊙O的直径,AB=8cm,==,M是AB上一动点,CM+DM的最小值是 cm. 21.(2014•宿迁)如图,正方形ABCD
8、的边长为2,点E为边BC的中点,点P在对角线BD上移动,则PE+PC的最小值是 . 22.(2014•黑龙江)如图,菱形ABCD中,对角线AC=6,BD=8,M、N分别是BC、CD的中点,P是线段BD上的一个动点,则PM+PN的最小值是 . 23.(2014•锦州)菱形ABCD的边长为2,∠ABC=60°,E是AD边中点,点P是对角线BD上的动点,当AP+PE的值最小时,PC的长是 . 24.(2014•长沙)如图,在平面直角坐标系中,已知点A(2,3),点B(﹣2,1),在x轴上存在点P到A,B两点的距离之和最小,则P点的坐标
9、是 . 25.(2014•无锡)如图,菱形ABCD中,∠A=60°,AB=3,⊙A、⊙B的半径分别为2和1,P、E、F分别是边CD、⊙A和⊙B上的动点,则PE+PF的最小值是 . 26.(2014•青岛)如图,在等腰梯形ABCD中,AB=AD=2,∠BCD=60°,对角线AC平分∠BCD,E,F分别是底边AD,BC的中点,连接EF.点P是EF上的任意一点,连接PA,PB,则PA+PB的最小值为 . 27.(2014•莆田)如图,菱形ABCD的边长为4,∠BAD=120°,点E是AB的中点,点F是AC上的一动点,则EF+BF的最小
10、值是 . 28.(2013•莆田)如图,正方形ABCD的边长为4,点P在DC边上且DP=1,点Q是AC上一动点,则DQ+PQ的最小值为 . 三.解答题(共2小题) 29.(2014•齐齐哈尔)如图,已知抛物线的顶点为A(1,4),抛物线与y轴交于点B(0,3),与x轴交于C、D两点,点P是x轴上的一个动点. (1)求此抛物线的解析式; (2)当PA+PB的值最小时,求点P的坐标. 30.(2013•日照)问题背景: 如图(a),点A、B在直线l的同侧,要在直线l上找一点C,使AC与BC的距离之和最小,我们可以作出点B关于l的
11、对称点B′,连接AB′与直线l交于点C,则点C即为所求. (1)实践运用: 如图(b),已知,⊙O的直径CD为4,点A在⊙O上,∠ACD=30°,B为弧AD的中点,P为直径CD上一动点,则BP+AP的最小值为 . (2)知识拓展: 如图(c),在Rt△ABC中,AB=10,∠BAC=45°,∠BAC的平分线交BC于点D,E、F分别是线段AD和AB上的动点,求BE+EF的最小值,并写出解答过程. 轴对称最短距离问题专题 参考答案与试题解析 一.选择题(共12小题) 1.(2015•绥化)如图,在矩形ABCD中,AB=10,BC=5.
12、若点M、N分别是线段AC,AB上的两个动点,则BM+MN的最小值为( ) A.10 B.8 C.5 D.6 【考点】轴对称-最短路线问题.菁优网版权所有 【分析】过B点作AC的垂线,使AC两边的线段相等,到E点,过E作EF垂直AB交AB于F点,EF就是所求的线段. 【解答】解:过B点作AC的垂线,使AC两边的线段相等,到E点,过E作EF垂直AB交AB于F点, AC=5, AC边上的高为2,所以BE=4. ∵△ABC∽△EFB, ∴=,即= EF=8. 故选B. 【点评】本题考查最短路径问题,关键确定何时路径最短,然后运用勾股定理和相似三角形的性质求得解.
13、 2.(2015•南宁)如图,AB是⊙O的直径,AB=8,点M在⊙O上,∠MAB=20°,N是弧MB的中点,P是直径AB上的一动点.若MN=1,则△PMN周长的最小值为( ) A.4 B.5 C.6 D.7 【考点】轴对称-最短路线问题;圆周角定理.菁优网版权所有 【专题】压轴题. 【分析】作N关于AB的对称点N′,连接MN′,NN′,ON′,ON,由两点之间线段最短可知MN′与AB的交点P′即为△PMN周长的最小时的点,根据N是弧MB的中点可知∠A=∠NOB=∠MON=20°,故可得出∠MON′=60°,故△MON′为等边三角形,由此可得出结论. 【解答】解:作N关于AB的对
14、称点N′,连接MN′,NN′,ON′,ON. ∵N关于AB的对称点N′, ∴MN′与AB的交点P′即为△PMN周长的最小时的点, ∵N是弧MB的中点, ∴∠A=∠NOB=∠MON=20°, ∴∠MON′=60°, ∴△MON′为等边三角形, ∴MN′=OM=4, ∴△PMN周长的最小值为4+1=5. 故选:B. 【点评】本题考查的是轴对称﹣最短路径问题,凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合本节所学轴对称变换来解决,多数情况要作点关于某直线的对称点. 3.(2015•内江)如图,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABC
15、D内,在对角线AC上有一点P,使PD+PE最小,则这个最小值为( ) A. B.2 C.2 D. 【考点】轴对称-最短路线问题;正方形的性质.菁优网版权所有 【分析】由于点B与D关于AC对称,所以BE与AC的交点即为P点.此时PD+PE=BE最小,而BE是等边△ABE的边,BE=AB,由正方形ABCD的面积为12,可求出AB的长,从而得出结果. 【解答】解:由题意,可得BE与AC交于点P. ∵点B与D关于AC对称, ∴PD=PB, ∴PD+PE=PB+PE=BE最小. ∵正方形ABCD的面积为12, ∴AB=2. 又∵△ABE是等边三角形, ∴BE=AB=2. 故
16、所求最小值为2. 故选B. 【点评】此题考查了轴对称﹣﹣最短路线问题,正方形的性质,等边三角形的性质,找到点P的位置是解决问题的关键. 4.(2015•遵义)如图,四边形ABCD中,∠C=50°,∠B=∠D=90°,E、F分别是BC、DC上的点,当△AEF的周长最小时,∠EAF的度数为( ) A.50° B.60° C.70° D.80° 【考点】轴对称-最短路线问题.菁优网版权所有 【专题】压轴题. 【分析】据要使△AEF的周长最小,即利用点的对称,使三角形的三边在同一直线上,作出A关于BC和CD的对称点A′,A″,即可得出∠AA′E+∠A″=∠HAA′=50°
17、进而得出∠AEF+∠AFE=2(∠AA′E+∠A″),即可得出答案. 【解答】解:作A关于BC和CD的对称点A′,A″,连接A′A″,交BC于E,交CD于F,则A′A″即为△AEF的周长最小值.作DA延长线AH, ∵∠C=50°, ∴∠DAB=130°, ∴∠HAA′=50°, ∴∠AA′E+∠A″=∠HAA′=50°, ∵∠EA′A=∠EAA′,∠FAD=∠A″, ∴∠EAA′+∠A″AF=50°, ∴∠EAF=130°﹣50°=80°, 故选:D. 【点评】本题考查的是轴对称﹣最短路线问题,涉及到平面内最短路线问题求法以及三角形的外角的性质和垂直平分线的性质等知识
18、根据已知得出E,F的位置是解题关键. 5.(2015•营口)如图,点P是∠AOB内任意一点,OP=5cm,点M和点N分别是射线OA和射线OB上的动点,△PMN周长的最小值是5cm,则∠AOB的度数是( ) A.25° B.30° C.35° D.40° 【考点】轴对称-最短路线问题.菁优网版权所有 【专题】压轴题. 【分析】分别作点P关于OA、OB的对称点C、D,连接CD,分别交OA、OB于点M、N,连接OC、OD、PM、PN、MN,由对称的性质得出PM=CM,OP=OC,∠COA=∠POA;PN=DN,OP=OD,∠DOB=∠POB,得出∠AOB=∠COD,证出△OC
19、D是等边三角形,得出∠COD=60°,即可得出结果. 【解答】解:分别作点P关于OA、OB的对称点C、D,连接CD, 分别交OA、OB于点M、N,连接OC、OD、PM、PN、MN,如图所示: ∵点P关于OA的对称点为D,关于OB的对称点为C, ∴PM=DM,OP=OD,∠DOA=∠POA; ∵点P关于OB的对称点为C, ∴PN=CN,OP=OC,∠COB=∠POB, ∴OC=OP=OD,∠AOB=∠COD, ∵△PMN周长的最小值是5cm, ∴PM+PN+MN=5, ∴DM+CN+MN=5, 即CD=5=OP, ∴OC=OD=CD, 即△OCD是等边三角形, ∴∠C
20、OD=60°, ∴∠AOB=30°; 故选:B. 【点评】本题考查了轴对称的性质、最短路线问题、等边三角形的判定与性质;熟练掌握轴对称的性质,证明三角形是等边三角形是解决问题的关键. 6.(2014•贵港)如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,AD是∠BAC的平分线.若P,Q分别是AD和AC上的动点,则PC+PQ的最小值是( ) A. B.4 C. D.5 【考点】轴对称-最短路线问题.菁优网版权所有 【分析】过点C作CM⊥AB交AB于点M,交AD于点P,过点P作PQ⊥AC于点Q,由AD是∠BAC的平分线.得出PQ=PM,这时PC+PQ有最
21、小值,即CM的长度,运用勾股定理求出AB,再运用S△ABC=AB•CM=AC•BC,得出CM的值,即PC+PQ的最小值. 【解答】解:如图,过点C作CM⊥AB交AB于点M,交AD于点P,过点P作PQ⊥AC于点Q, ∵AD是∠BAC的平分线. ∴PQ=PM,这时PC+PQ有最小值,即CM的长度, ∵AC=6,BC=8,∠ACB=90°, ∴AB===10. ∵S△ABC=AB•CM=AC•BC, ∴CM===, 即PC+PQ的最小值为. 故选:C. 【点评】本题主要考查了轴对称问题,解题的关键是找出满足PC+PQ有最小值时点P和Q的位置. 7.(2014•安顺)如
22、图,MN是半径为1的⊙O的直径,点A在⊙O上,∠AMN=30°,点B为劣弧AN的中点.P是直径MN上一动点,则PA+PB的最小值为( ) A. B.1 C.2 D.2 【考点】轴对称-最短路线问题;勾股定理;垂径定理.菁优网版权所有 【分析】作点B关于MN的对称点B′,连接OA、OB、OB′、AB′,根据轴对称确定最短路线问题可得AB′与MN的交点即为PA+PB的最小时的点,根据在同圆或等圆中,同弧所对的圆心角等于圆周角的2倍求出∠AON=60°,然后求出∠BON=30°,再根据对称性可得∠B′ON=∠BON=30°,然后求出∠AOB′=90°,从而判断出△AOB′是等腰直角三角形
23、再根据等腰直角三角形的性质可得AB′=OA,即为PA+PB的最小值. 【解答】解:作点B关于MN的对称点B′,连接OA、OB、OB′、AB′, 则AB′与MN的交点即为PA+PB的最小时的点,PA+PB的最小值=AB′, ∵∠AMN=30°, ∴∠AON=2∠AMN=2×30°=60°, ∵点B为劣弧AN的中点, ∴∠BON=∠AON=×60°=30°, 由对称性,∠B′ON=∠BON=30°, ∴∠AOB′=∠AON+∠B′ON=60°+30°=90°, ∴△AOB′是等腰直角三角形, ∴AB′=OA=×1=, 即PA+PB的最小值=. 故选:A. 【点评】本
24、题考查了轴对称确定最短路线问题,在同圆或等圆中,同弧所对的圆心角等于圆周角的2倍的性质,作辅助线并得到△AOB′是等腰直角三角形是解题的关键. 8.(2014•鄂尔多斯)如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,D是AB上的动点,E是BC上的动点,则AE+DE的最小值为( ) A.3+2 B.10 C. D. 【考点】轴对称-最短路线问题.菁优网版权所有 【分析】作点A关于BC的对称点A′,过点A′作A′D⊥AB交BC、AB分别于点E、D,根据轴对称确定最短路线问题,A′D的长度即为AE+DE的最小值,利用勾股定理列式求出AB,再利用∠ABC的正弦列式计算即
25、可得解. 【解答】解:如图,作点A关于BC的对称点A′,过点A′作A′D⊥AB交BC、AB分别于点E、D, 则A′D的长度即为AE+DE的最小值,AA′=2AC=2×6=12, ∵∠ACB=90°,BC=8,AC=6, ∴AB===10, ∴sin∠BAC===, ∴A′D=AA′•sin∠BAC=12×=, 即AE+DE的最小值是. 故选D. 【点评】本题考查了利用轴对称确定最短路线问题,主要利用了勾股定理,垂线段最短,锐角三角函数的定义,难点在于确定出点D、E的位置. 9.(2013•济宁)如图,在直角坐标系中,点A、B的坐标分别为(1,4)和(3,0),点C
26、是y轴上的一个动点,且A、B、C三点不在同一条直线上,当△ABC的周长最小时,点C的坐标是( ) A.(0,0) B.(0,1) C.(0,2) D.(0,3) 【考点】轴对称-最短路线问题;坐标与图形性质.菁优网版权所有 【分析】根据轴对称作最短路线得出AE=B′E,进而得出B′O=C′O,即可得出△ABC的周长最小时C点坐标. 【解答】解:作B点关于y轴对称点B′点,连接AB′,交y轴于点C′, 此时△ABC的周长最小, ∵点A、B的坐标分别为(1,4)和(3,0), ∴B′点坐标为:(﹣3,0),AE=4, 则B′E=4,即B′E=AE, ∵C′O∥AE, ∴B
27、′O=C′O=3, ∴点C′的坐标是(0,3),此时△ABC的周长最小. 故选:D. 【点评】此题主要考查了利用轴对称求最短路线以及平行线的性质,根据已知得出C点位置是解题关键. 10.(2013•鄂尔多斯)如图,A和B两地在一条河的两岸,现要在河上造一座桥MN,使从A到B的路径AMNB最短的是(假定河的两岸是平行直线,桥要与河岸垂直)( ) A. B. C. D. 【考点】轴对称-最短路线问题.菁优网版权所有 【分析】过A作河的垂线AH,要使最短,MN⊥直线a,AI=MN,连接BI即可得出N,作出AM、MN、BN即可. 【解答】解:根据垂线段最短,得出MN是河
28、的宽时,MN最短,即MN⊥直线a(或直线b), 只要AM+BN最短就行, 即过A作河岸a的垂线AH,垂足为H,在AH上取点I,使AI等于河宽.连结IB交河的b边岸于N,作MN垂直于河岸交a边的岸于M点,所得MN即为所求. 故选D. 【点评】本题考查了最短路线问题,垂线段最短,三角形的三边关系定理的应用,关键是如何找出M、N点的位置. 11.(2013•苏州)如图,在平面直角坐标系中,Rt△OAB的顶点A在x轴的正半轴上.顶点B的坐标为(3,),点C的坐标为(,0),点P为斜边OB上的一个动点,则PA+PC的最小值为( ) A. B. C. D.2 【考点】轴对称-
29、最短路线问题;坐标与图形性质.菁优网版权所有 【专题】压轴题. 【分析】作A关于OB的对称点D,连接CD交OB于P,连接AP,过D作DN⊥OA于N,则此时PA+PC的值最小,求出AM,求出AD,求出DN、CN,根据勾股定理求出CD,即可得出答案. 【解答】解:作A关于OB的对称点D,连接CD交OB于P,连接AP,过D作DN⊥OA于N, 则此时PA+PC的值最小, ∵DP=PA, ∴PA+PC=PD+PC=CD, ∵B(3,), ∴AB=,OA=3,∠B=60°,由勾股定理得:OB=2, 由三角形面积公式得:×OA×AB=×OB×AM, ∴AM=, ∴AD=2×=3, ∵
30、∠AMB=90°,∠B=60°, ∴∠BAM=30°, ∵∠BAO=90°, ∴∠OAM=60°, ∵DN⊥OA, ∴∠NDA=30°, ∴AN=AD=,由勾股定理得:DN=, ∵C(,0), ∴CN=3﹣﹣=1, 在Rt△DNC中,由勾股定理得:DC==, 即PA+PC的最小值是, 故选:B. 【点评】本题考查了三角形的内角和定理,轴对称﹣最短路线问题,勾股定理,含30度角的直角三角形性质的应用,关键是求出P点的位置,题目比较好,难度适中. 12.(2012•黔西南州)如图,抛物线y=x2+bx﹣2与x轴交于A、B两点,与y交于C点,且A(﹣1,0),点M
31、m,0)是x轴上的一个动点,当MC+MD的值最小时,m的值是( ) A. B. C. D. 【考点】轴对称-最短路线问题;二次函数的性质;相似三角形的判定与性质.菁优网版权所有 【专题】压轴题. 【分析】首先可求得二次函数的顶点坐标,再求得C关于x轴的对称点C′,求得直线C′D的解析式,与x轴的交点的横坐标即是m的值,再利用相似三角形的判定和性质求解即可. 【解答】解:∵点A(﹣1,0)在抛物线y=x2+bx﹣2上, ∴×(﹣1)2+b×(﹣1)﹣2=0, ∴b=﹣, ∴抛物线的解析式为y=x2﹣x﹣2, ∴顶点D的坐标为(,﹣), 作出点C关于x轴的对称点C′,则
32、C′(0,2),OC′=2 连接C′D交x轴于点M, 根据轴对称性及两点之间线段最短可知,MC+MD的值最小. 设抛物线的对称轴交x轴于点E. ∵ED∥y轴, ∴∠OC′M=∠EDM,∠C′OM=∠DEM ∴△C′OM∽△DEM. ∴=, 即=, ∴m=. 故选B. 【点评】本题着重考查了待定系数法求二次函数解析式,轴对称性质以及相似三角形的性质,关键在于求出函数表达式,作出辅助线,找对相似三角形. 二.填空题(共16小题) 13.(2015•武汉)如图,∠AOB=30°,点M、N分别在边OA、OB上,且OM=1,ON=3,点P、Q分别在边OB、OA上,则
33、MP+PQ+QN的最小值是 . 【考点】轴对称-最短路线问题.菁优网版权所有 【专题】压轴题. 【分析】作M关于OB的对称点M′,作N关于OA的对称点N′,连接M′N′,即为MP+PQ+QN的最小值. 【解答】解:作M关于OB的对称点M′,作N关于OA的对称点N′, 连接M′N′,即为MP+PQ+QN的最小值. 根据轴对称的定义可知:∠N′OQ=∠M′OB=30°,∠ONN′=60°, ∴△ONN′为等边三角形,△OMM′为等边三角形, ∴∠N′OM′=90°, ∴在Rt△M′ON′中, M′N′==. 故答案为. 【点评】本题考查了轴对称﹣﹣最短路径问题,根
34、据轴对称的定义,找到相等的线段,得到等边三角形是解题的关键. 14.(2015•鄂州)如图,∠AOB=30°,点M、N分别是射线OA、OB上的动点,OP平分∠AOB,且OP=6,当△PMN的周长取最小值时,四边形PMON的面积为 36﹣54 . 【考点】轴对称-最短路线问题.菁优网版权所有 【专题】压轴题. 【分析】设点P关于OA的对称点为C,关于OB的对称点为D,当点M、N在CD上时,△PMN的周长最小,此时△COD是等边三角形,求得三角形PMN和△COD的面积,根据四边形PMON的面积为:( S△COD+S△PMN)求得即可. 【解答】解:分别作点P关于OA、OB的对称
35、点C、D,连接CD,分别交OA、OB于点M、N,连接OC、OD、PC、PD. ∵点P关于OA的对称点为C,关于OB的对称点为D, ∴PM=CM,OP=OC,∠COA=∠POA; ∵点P关于OB的对称点为D, ∴PN=DN,OP=OD,∠DOB=∠POB, ∴OC=OD=OP=6,∠COD=∠COA+∠POA+∠POB+∠DOB=2∠POA+2∠POB=2∠AOB=60°, ∴△COD是等边三角形, ∴CD=OC=OD=6. ∵∠POC=∠POD, ∴OP⊥CD, ∴OQ=6×=3, ∴PQ=6﹣3, 设MQ=x,则PM=CM=3﹣x, ∴(3﹣x)2﹣x2=(6﹣3)
36、2,解得x=6﹣9, ∴S△PMN=MN×PQ=MQ•PQ=(6﹣9)•(6﹣3)=63﹣108, ∵S△COD=×3×6=9,S△COM=S△POM,S△DON=S△PON, ∴四边形PMON的面积为:(S△COD+S△PMN)=×(72﹣108)=36﹣54. 故答案为36﹣54. 【点评】此题主要考查轴对称﹣﹣最短路线问题,熟知两点之间线段最短是解答此题的关键. 15.(2015•盘锦)如图,菱形ABCD的边长为2,∠DAB=60°,E为BC的中点,在对角线AC上存在一点P,使△PBE的周长最小,则△PBE的周长的最小值为 +1 . 【考点】轴对称-最短路线问
37、题;菱形的性质.菁优网版权所有 【分析】连接BD,与AC的交点即为使△PBE的周长最小的点P;由菱形的性质得出∠BPC=90°,由直角三角形斜边上的中线性质得出PE=BE,证明△PBE是等边三角形,得出PB=BE=PE=1,即可得出结果. 【解答】解:连结DE. ∵BE的长度固定, ∴要使△PBE的周长最小只需要PB+PE的长度最小即可, ∵四边形ABCD是菱形, ∴AC与BD互相垂直平分, ∴P′D=P′B, ∴PB+PE的最小长度为DE的长, ∵菱形ABCD的边长为2,E为BC的中点,∠DAB=60°, ∴△BCD是等边三角形, 又∵菱形ABCD的边长为2, ∴BD
38、2,BE=1,DE=, ∴△PBE的最小周长=DE+BE=+1, 故答案为:+1. 【点评】本题考查了菱形的性质、轴对称以及最短路线问题、直角三角形斜边上的中线性质;熟练掌握菱形的性质,并能进行推理计算是解决问题的关键. 16.(2015•攀枝花)如图,在边长为2的等边△ABC中,D为BC的中点,E是AC边上一点,则BE+DE的最小值为 . 【考点】轴对称-最短路线问题;等边三角形的性质.菁优网版权所有 【分析】作B关于AC的对称点B′,连接BB′、B′D,交AC于E,此时BE+ED=B′E+ED=B′D,根据两点之间线段最短可知B′D就是BE+ED的最小值,故E
39、即为所求的点. 【解答】解:作B关于AC的对称点B′,连接BB′、B′D,交AC于E,此时BE+ED=B′E+ED=B′D,根据两点之间线段最短可知B′D就是BE+ED的最小值, ∵B、B′关于AC的对称, ∴AC、BB′互相垂直平分, ∴四边形ABCB′是平行四边形, ∵三角形ABC是边长为2, ∵D为BC的中点, ∴AD⊥BC, ∴AD=,BD=CD=1,BB′=2AD=2, 作B′G⊥BC的延长线于G, ∴B′G=AD=, 在Rt△B′BG中, BG===3, ∴DG=BG﹣BD=3﹣1=2, 在Rt△B′DG中,BD===. 故BE+ED的最小值为. 故
40、答案为:. 【点评】本题考查的是最短路线问题,涉及的知识点有:轴对称的性质、等边三角形的性质、勾股定理等,有一定的综合性,但难易适中. 17.(2015•玉林)如图,已知正方形ABCD边长为3,点E在AB边上且BE=1,点P,Q分别是边BC,CD的动点(均不与顶点重合),当四边形AEPQ的周长取最小值时,四边形AEPQ的面积是 3 . 【考点】轴对称-最短路线问题;正方形的性质.菁优网版权所有 【专题】计算题;压轴题. 【分析】根据最短路径的求法,先确定点E关于BC的对称点E′,再确定点A关于DC的对称点A′,连接A′E′即可得出P,Q的位置;再根据相似得出相应的线段长
41、从而可求得四边形AEPQ的面积. 【解答】解:如图1所示, 作E关于BC的对称点E′,点A关于DC的对称点A′,连接A′E′,四边形AEPQ的周长最小, ∵AD=A′D=3,BE=BE′=1, ∴AA′=6,AE′=4. ∵DQ∥AE′,D是AA′的中点, ∴DQ是△AA′E′的中位线, ∴DQ=AE′=2;CQ=DC﹣CQ=3﹣2=1, ∵BP∥AA′, ∴△BE′P∽△AE′A′, ∴=,即=,BP=,CP=BC﹣BP=3﹣=, S四边形AEPQ=S正方形ABCD﹣S△ADQ﹣S△PCQ﹣SBEP=9﹣AD•DQ﹣CQ•CP﹣BE•BP =9﹣×3×2﹣×1×﹣×1
42、×=, 故答案为:. 【点评】本题考查了轴对称,利用轴对称确定A′、E′,连接A′E′得出P、Q的位置是解题关键,又利用了相似三角形的判定与性质,图形分割法是求面积的重要方法. 18.(2015•安顺)如图,正方形ABCD的边长为4,E为BC上一点,BE=1,F为AB上一点,AF=2,P为AC上一点,则PF+PE的最小值为 . 【考点】轴对称-最短路线问题;正方形的性质.菁优网版权所有 【专题】压轴题. 【分析】作E关于直线AC的对称点E′,连接E′F,则E′F即为所求,过F作FG⊥CD于G,在Rt△E′FG中,利用勾股定理即可求出E′F的长. 【解答】解:作E关于直
43、线AC的对称点E′,连接E′F,则E′F即为所求, 过F作FG⊥CD于G, 在Rt△E′FG中, GE′=CD﹣BE﹣BF=4﹣1﹣2=1,GF=4, 所以E′F=. 故答案为:. 【点评】本题考查的是最短线路问题,熟知两点之间线段最短是解答此题的关键. 19.(2014•资阳)如图,在边长为4的正方形ABCD中,E是AB边上的一点,且AE=3,点Q为对角线AC上的动点,则△BEQ周长的最小值为 6 . 【考点】轴对称-最短路线问题;正方形的性质.菁优网版权所有 【专题】计算题. 【分析】连接BD,DE,根据正方形的性质可知点B与点D关于直线AC对称,故DE的
44、长即为BQ+QE的最小值,进而可得出结论. 【解答】解:连接BD,DE, ∵四边形ABCD是正方形, ∴点B与点D关于直线AC对称, ∴DE的长即为BQ+QE的最小值, ∵DE=BQ+QE===5, ∴△BEQ周长的最小值=DE+BE=5+1=6. 故答案为:6. 【点评】本题考查的是轴对称﹣最短路线问题,熟知轴对称的性质是解答此题的关键. 20.(2014•东营)在⊙O中,AB是⊙O的直径,AB=8cm,==,M是AB上一动点,CM+DM的最小值是 8 cm. 【考点】轴对称-最短路线问题;勾股定理;垂径定理.菁优网版权所有 【分析】作点C关于AB的对称点
45、C′,连接C′D与AB相交于点M,根据轴对称确定最短路线问题,点M为CM+DM的最小值时的位置,根据垂径定理可得=,然后求出C′D为直径,从而得解. 【解答】解:如图,作点C关于AB的对称点C′,连接C′D与AB相交于点M, 此时,点M为CM+DM的最小值时的位置, 由垂径定理,=, ∴=, ∵==,AB为直径, ∴C′D为直径, ∴CM+DM的最小值是8cm. 故答案为:8. 【点评】本题考查了轴对称确定最短路线问题,垂径定理,熟记定理并作出图形,判断出CM+DM的最小值等于圆的直径的长度是解题的关键. 21.(2014•宿迁)如图,正方形ABCD的边长为2,点
46、E为边BC的中点,点P在对角线BD上移动,则PE+PC的最小值是 . 【考点】轴对称-最短路线问题;正方形的性质.菁优网版权所有 【专题】计算题. 【分析】要求PE+PC的最小值,PE,PC不能直接求,可考虑通过作辅助线转化PE,PC的值,从而找出其最小值求解. 【解答】解:如图,连接AE, ∵点C关于BD的对称点为点A, ∴PE+PC=PE+AP, 根据两点之间线段最短可得AE就是AP+PE的最小值, ∵正方形ABCD的边长为2,E是BC边的中点, ∴BE=1, ∴AE==, 故答案为:. 【点评】此题主要考查了正方形的性质和轴对称及勾股定理等知识的综合应用
47、.根据已知得出两点之间线段最短可得AE就是AP+PE的最小值是解题关键. 22.(2014•黑龙江)如图,菱形ABCD中,对角线AC=6,BD=8,M、N分别是BC、CD的中点,P是线段BD上的一个动点,则PM+PN的最小值是 5 . 【考点】轴对称-最短路线问题;勾股定理的应用;平行四边形的判定与性质;菱形的性质.菁优网版权所有 【专题】几何图形问题. 【分析】作M关于BD的对称点Q,连接NQ,交BD于P,连接MP,此时MP+NP的值最小,连接AC,求出CP、PB,根据勾股定理求出BC长,证出MP+NP=QN=BC,即可得出答案. 【解答】解:作M关于BD的对称点Q,连接
48、NQ,交BD于P,连接MP,此时MP+NP的值最小,连接AC, ∵四边形ABCD是菱形, ∴AC⊥BD,∠QBP=∠MBP, 即Q在AB上, ∵MQ⊥BD, ∴AC∥MQ, ∵M为BC中点, ∴Q为AB中点, ∵N为CD中点,四边形ABCD是菱形, ∴BQ∥CD,BQ=CN, ∴四边形BQNC是平行四边形, ∴NQ=BC, ∵四边形ABCD是菱形, ∴CP=AC=3,BP=BD=4, 在Rt△BPC中,由勾股定理得:BC=5, 即NQ=5, ∴MP+NP=QP+NP=QN=5, 故答案为:5. 【点评】本题考查了轴对称﹣最短路线问题,平行四边形的性质和判
49、定,菱形的性质,勾股定理的应用,解此题的关键是能根据轴对称找出P的位置. 23.(2014•锦州)菱形ABCD的边长为2,∠ABC=60°,E是AD边中点,点P是对角线BD上的动点,当AP+PE的值最小时,PC的长是 . 【考点】轴对称-最短路线问题;菱形的性质.菁优网版权所有 【专题】几何综合题. 【分析】作点E关于直线BD的对称点E′,连接AE′,则线段AE′的长即为AP+PE的最小值,再由轴对称的性质可知DE=DE′=1,故可得出△AE′D是直角三角形,由菱形的性质可知∠PDE′=∠ADC=30°,根据锐角三角函数的定义求出PE的长,进而可得出PC的长. 【解答】解
50、如图所示, 作点E关于直线BD的对称点E′,连接AE′,则线段AE′的长即为AP+PE的最小值, ∵菱形ABCD的边长为2,E是AD边中点, ∴DE=DE′=AD=1, ∴△AE′D是直角三角形, ∵∠ABC=60°, ∴∠PDE′=∠ADC=30°, ∴PE′=DE′•tan30°=, ∴PC===. 故答案为:. 【点评】本题考查的是轴对称﹣最短路线问题,熟知菱形的性质及锐角三角函数的定义是解答此题的关键. 24.(2014•长沙)如图,在平面直角坐标系中,已知点A(2,3),点B(﹣2,1),在x轴上存在点P到A,B两点的距离之和最小,则P点的坐标是 (






