ImageVerifierCode 换一换
格式:PPT , 页数:12 ,大小:172.50KB ,
资源ID:797413      下载积分:11 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/797413.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【可****】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【可****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(1.3.1-1函数单调性的概念PPT课件.ppt)为本站上传会员【可****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

1.3.1-1函数单调性的概念PPT课件.ppt

1、1.3.1 1.3.1 单调性与最大(小)值单调性与最大(小)值 第一课时第一课时 函数单调性的概念函数单调性的概念 高一高一 数学数学必修必修1安徽新华学校安徽新华学校1.问题提出问题提出 德国有一位著名的心理学家艾宾浩斯,对人类德国有一位著名的心理学家艾宾浩斯,对人类的记忆牢固程度进行了有关研究的记忆牢固程度进行了有关研究.他经过测试,得他经过测试,得到了以下一些数据:到了以下一些数据:时间间隔时间间隔 t刚记刚记忆完忆完毕毕20分分钟后钟后60分分钟后钟后8-9小时小时后后1天天后后2天天后后6天天后后一个一个月后月后记忆量记忆量y(百分比百分比)10058.244.235.833.72

2、7.825.421.1以上数据表明,记忆量以上数据表明,记忆量y y是时间是时间间隔间隔t t的函数的函数.艾宾浩斯根据这艾宾浩斯根据这些数据描绘出了著名的些数据描绘出了著名的“艾宾浩艾宾浩斯遗忘曲线斯遗忘曲线”,”,如图如图.123tyo204060801002.思考思考1:1:当时间间隔当时间间隔t t逐渐增逐渐增 大你能看出对应的函数值大你能看出对应的函数值y y有什么变化趋势?通过这个有什么变化趋势?通过这个试验,你打算以后如何对待试验,你打算以后如何对待刚学过的知识刚学过的知识?思考思考2:2:“艾宾浩斯遗忘曲线艾宾浩斯遗忘曲线”从左至右是逐渐下降的,对此,从左至右是逐渐下降的,对此

3、,我们如何用数学观点进行解释?我们如何用数学观点进行解释?tyo204060801001233.知识探究(一)知识探究(一)yxo考察下列两个函数考察下列两个函数:(1 1);(2)(2)xyo思考思考1 1:这两个函数的图象分别是什么?二者有何这两个函数的图象分别是什么?二者有何共同特征?共同特征?思考思考2 2:如果一个函数的图象从左至右逐渐上升,如果一个函数的图象从左至右逐渐上升,那么当自变量那么当自变量x x从小到大依次取值时,函数值从小到大依次取值时,函数值y y的变的变化情况如何?化情况如何?4.思考思考3 3:如图为函数如图为函数 在定义域在定义域I I内某个区间内某个区间D D

4、上的图象,对于该区上的图象,对于该区间上任意两个自变量间上任意两个自变量x x1 1和和x x2 2,当,当 时,时,与与 的大小关系如何的大小关系如何?xyox1x2思考思考4 4:我们把具有上述特点的函数称为增函数,我们把具有上述特点的函数称为增函数,那么怎样定义那么怎样定义“函数函数 在区间在区间D D上是增函数上是增函数”?对于函数定义域对于函数定义域I I内某个区间内某个区间D D上的任意两个自变量上的任意两个自变量 的值,若当的值,若当 时,都有时,都有 ,则称函数则称函数 在区间在区间D D上是增函数上是增函数.5.知识探究(二)知识探究(二)考察下列两个函数考察下列两个函数:(

5、1 1);(2)(2)xyoxoy思考思考1 1:这两个函数的图象分别是什么?这两个函数的图象分别是什么?二者有何二者有何 共同特征?共同特征?6.思考思考2 2:我们把具有上述特点的我们把具有上述特点的函数称为减函数,那么怎样定函数称为减函数,那么怎样定义义“函数函数 在区间在区间D D上是减上是减函数函数”?xyox1x2对于函数定义域对于函数定义域I I内某个区间内某个区间D D上的任意两个自变量上的任意两个自变量 的值,若当的值,若当 ,则称函数则称函数 在区间在区间D D上是减函数上是减函数.思考思考3:3:对于函数定义域对于函数定义域I I内某个区间内某个区间D D上的任意两上的任

6、意两个自变量个自变量 的值,若当的值,若当 时,都有时,都有 ,则函数则函数 在区间在区间D D上是增函数还是上是增函数还是减函数?减函数?7.思考思考4 4:如果函数如果函数y=f(x)y=f(x)在区间在区间D D上是增函上是增函数或减函数,则称函数数或减函数,则称函数 在这一区间具有在这一区间具有(严格的)(严格的)单调性单调性,区间,区间D D叫做函数叫做函数 的的单调区间单调区间.那么二次函数在那么二次函数在R R上具有单调性吗?上具有单调性吗?函数函数 的单调区间如何?的单调区间如何?8.理论迁移理论迁移-5-5-3-31 13 36o ox xy y例例1 如图是定义在闭区间如图

7、是定义在闭区间-5-5,66上的函数上的函数 的图象,根据图象说出的图象,根据图象说出 的单调区间,以的单调区间,以及在每一单调区间上,及在每一单调区间上,函数函数 是增函数还是增函数还是减函数是减函数.9.例例3 3 试确定函数试确定函数 在区间在区间上的单调性上的单调性.例例2 2 物理学中的玻意耳定律物理学中的玻意耳定律 告诉我们,对于一定量的气体,当其体积告诉我们,对于一定量的气体,当其体积V V 减小时,压强减小时,压强p p将增大将增大.试用函数的单调性试用函数的单调性 证明证明.10.小小 结结利用定义确定或证明函数利用定义确定或证明函数f(x)f(x)在给定的在给定的 区间区间D D上的单调性的一般步骤:上的单调性的一般步骤:1.1.取数取数:任取任取x x1 1,x x2 2DD,且,且x x1 1x x2 2;2.2.作差作差:f(xf(x1 1)f(xf(x2 2);3.3.变形变形:通常是因式分解和配方通常是因式分解和配方;4.4.定号定号:判断差判断差f(xf(x1 1)f(xf(x2 2)的正负的正负;5.5.小结小结:指出函数指出函数f(x)f(x)在给定的区间在给定的区间D D上的上的 单调性单调性.11.作业:作业:P P3232 练习:练习:1 1,2 2,3 3,4.4.12.

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服