1、九年级数学二次函数单元测试题一、选择题: 1、抛物线的顶点坐标是( ). A(1,2)B(1,-2)C(-1, 2) D(-1,-2)2. 把抛物线向右平移3个单位,再向下平移2个单位,得到抛物线( ).A B C D 3、抛物线y=(x+1)22的对称轴是( )A直线x=1 B直线x=1 C直线y=1D直线y=14、二次函数与x轴的交点个数是( )A0 B1 C2 D35、若为二次函数的图象上的三点,则的大小关系( )A. B. C. D.6、在同一直角坐标系中,一次函数y=ax+c和二次函数y=ax2+c的图象大致为( )x321012345y125034305127.二次函数y=ax2+
2、bx+c(a、b、c为常数且a0)中的x与y的部分对应值如下表: 给出了结论:(1)二次函数y=ax2+bx+c有最小值,最小值为3;(2)当x2时,y0;(3)二次函数y=ax2+bx+c的图象与x轴有两个交点,且它们分别在y轴两侧.则其中正确结论的个数是( )A.3 B.2 C.1 D.08.已知二次函数y=ax2+bx+c(a0)的图象如图3所示,下列说法错误的是( )A.图象关于直线x=1对称B.函数y=ax2+bx+c(a0)的最小值是4C.1和3是方程ax2+bx+c=0(a0)的两个根 D.当x1时,y随x的增大而增大 9、二次函数与的图像与轴有交点,则的取值范围是( )A. B
3、. C. D.二、填空题:10、已知函数,当m= 时,它是二次函数.11、抛物线的开口方向向 ,对称轴是 ,最高点的坐标是 ,函数值得最大值是 。12、如图,四个二次函数的图象中,分别对应的是:y=ax2;y=bx2;y=cx2;y=dx则a、b、c、d的大小关系为 13、二次函数y=x2-3x+2的图像与x轴的交点坐标是 ,与y轴的交点坐标为 14、已知抛物线与轴一个交点的坐标为,则一元二次方程的根为 .15、把抛物线y=ax2+bx+c的图象先向右平移3个单位长度,再向下平移2个单位长度,所得图象的解析式是y=x2-4x+5,则a+b+c=.16、如图,用20 m长的铁丝网围成一个一面靠墙
4、的矩形养殖场,其养殖场的最大面积为_m2. (12) (16) (17)17、如图是某公园一圆形喷水池,水流在各个方向沿形状相同的抛物线落下,建立如下图所示的坐标系,如果喷头所在处A(0,1.25),水流路线最高处M(1,2.25),则该抛物的解析式为 。如果不考虑其他因素,那么水池的半径至少要 m,才能使喷出的水流不至落到池外。18、如图,二次函数y=ax2+bx+c的图象与y轴正半轴相交,其顶点坐标为,下列结论:abc0;a+b=0;4acb2=4a;a+b+c0.其中正确的有_个。三、解答题: 19.求出抛物线的开口方向、对称轴、顶点坐标(1) (配方法) (2)(公式法)20.已知二次
5、函数y=x2+2x+m(1)如果二次函数的图象与x轴有两个交点,求m的取值范围;(2)如图,二次函数的图象过点A(3,0),与y轴交于点B,直线AB与这个二次函数图象的对称轴交于点P,求点P的坐标(3)根据图象直接写出使一次函数值大于二次函数值的x的取值范围21.某商店经营儿童益智玩具,已知成批购进时的单价是20元.调查发现:销售单价是30元时,月销售量是230件,而销售单价每上涨1元,月销售量就减少10件,但每件玩具售价不能高于40元. 设每件玩具的销售单价上涨了x元时(x为正整数),月销售利润为y元.(1)求y与x的函数关系式并直接写出自变量x的取值范围;(2)每件玩具的售价定为多少元时,
6、月销售利润恰为2520元?(3)每件玩具的售价定为多少元时可使月销售利润最大?最大的月利润是多少?22.如图,小河上有一拱桥,拱桥及河道的截面轮廓有抛物线的一部分ACB和矩形的三边AE,ED,DB组成,已知河底ED是水平的,ED=16米,AE=8米,抛物线的顶点C到ED的距离是11米,以ED所在直线为x轴,抛物线的对称轴为y轴建立平面直角坐标系。(1)求抛物线的解析式;(2)已知从某时刻开始的40个小时内,水面与河底ED的距离h(米)随时间(时)的变化满足函数关系:,且当顶点C到水面的距离不大于5米时,需禁止船只通行。请通过计算说明:在这一时段内,需多少小时禁止船只通过? 23.如图,抛物线y=x2+bx+c与x轴交于A(1,0),B(3,0)两点(1)求该抛物线的解析式;(2)求该抛物线的对称轴以及顶点坐标;(3)设(1)中的抛物线上有一个动点P,当点P在该抛物线上滑动到什么位置时,满足SPAB=8,并求出此时P点的坐标