ImageVerifierCode 换一换
格式:PPT , 页数:22 ,大小:1.11MB ,
资源ID:7941725      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/7941725.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精***】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【精***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(探索勾股定理(三)演示文稿.ppt)为本站上传会员【精***】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

探索勾股定理(三)演示文稿.ppt

1、单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,探索勾股定理(三)演示文稿,勾股定理证明方法汇总,课前自主探究活动,方法种类及历史背景,验证定理的具体过程,知识运用及思想方法,探究报告,具体的做法是:,请各个学习小组从网络或书籍上,尽可能多地寻找和了解验证勾股定理的方法.,验证过程的分析与欣赏,第一种类型:以赵爽的“弦图”为代表,用几何图形的截、割、拼、补,来证明代数式之间的恒等关系;,第二种类型:以欧几里得的证明方法为代表,运用欧氏几何的基本定理进行证明;,第三种类型:以刘徽的“青朱出入图”为代表,“无字证明”.,问题思考,运用了哪些数学知识?,体现了

2、哪些数学思想方法?,这种方法与其他方法比较,有什么共同点和不同点?,对某一验证方法,三种类型:,第一种类型:,以赵爽的“弦图”为代表,用几何图形的截、割、拼、补,来证明代数式之间的恒等关系。体现了以形证数、形数统一、代数和几何的紧密结合.,第二种类型:,以欧几里得的证明方法为代表,运用欧氏几何的基本定理进行证明,反映了勾股定理的几何意义.,第三种类型:,以刘徽的“青朱出入图”为代表,证明不需用任何数学符号和文字,更不需进行运算,隐含在图中的勾股定理便清晰地呈现,整个证明单靠移动几块图形而得出,被称为“无字证明”.,方法一:三国时期吴国数学家赵爽在为周髀算经作注解时,创制了一幅“勾股圆方图”,也

3、称为“弦图”,这是我国对勾股定理最早的证明.,2002年世界数学家大会在北京召开,这届大会会标的中央图案正是经过艺术处理的“弦图”,标志着中国古代数学成就.,第一种类型:,c,b,a,由面积计算,得,展开,得,化简,得,a,a,b,b,c,c,方法二:美国第二十任总统伽菲尔德的证法,被称为“总统证法”.,如图,梯形由三个直角三角形组合而成,利用面积公式,列出代数关系式,得,化简,得,第一种类型:,据传是当年毕达哥拉斯发现勾股定理时做出的证明。,将4个全等的直角三角形拼成边长为(ab)的正方形ABCD,使中间留下边长c的一个正方形洞画出正方形ABCD移动三角形至图2所示的位置中,于是留下了边长分

4、别为a与b的两个正方形洞则图1和图2中的白色部分面积必定相等,所以c,2,=a,2,+b,2,图1,图2,方法三,第一种类型:,第二种类型:,以欧几里得的证明方法为代表,运用欧氏几何的基本定理进行证明,反映了勾股定理的几何意义。,如图,过 A 点画一直线 AL 使其垂直于 DE,并交 DE 于 L,交 BC 于 M。通过证明BCFBDA,利用三角形面积与长方形面积的关系,得到正方形ABFG与矩形BDLM等积,同理正方形ACKH与 矩形MLEC也等积,于是推得,第二种类型:,以欧几里得的证明方法为代表,运用欧氏几何的基本定理进行证明,反映了勾股定理的几何意义。,第三种类型:,以刘徽的“青朱出入图

5、”为代表,证明不需用任何数学符号和文字,更不需进行运算,隐含在图中的勾股定理便清晰地呈现,整个证明单靠移动几块图形而得出,被称为“无字证明”。,约公元 263 年,三国时代魏国的数学家刘徽为古籍九章算术作注释时,用“出入相补法”证明了勾股定理。,a,b,c,无字证明,第三种类型:,以刘徽的“青朱出入图”为代表,证明不需用任何数学符号和文字,更不需进行运算,隐含在图中的勾股定理便清晰地呈现,整个证明单靠移动几块图形而得出,被称为“无字证明”。,做法是将一条垂直线和一条水平线,将较大直角边的正方形分成 4 分。之后依照图中的颜色,将两个直角边的正方形填入斜边正方形之中,便可完成定理的证明。,单击图

6、片打开,第三种类型:,在印度、在阿拉伯世界和欧洲出现的一种拼图证明,a,b,c,A,B,C,D,E,F,O,方法三:意大利文艺复兴时代的著名画家达芬奇对勾股定理进行了研究。,第三种类型:,A,a,B,C,b,D,E,F,O,A,B,C,D,E,F,五巧板的制作,A,B,C,E,D,F,G,H,I,a,b,c,尝试拼图,验证勾股定理,b,c,a,a,b,c,这种证明方法从几何图形的面积变化入手,运用了数形结合的思想方法。,b,c,利用五巧板拼图,验证勾股定理:,练习提升,2.一个直角三角形的斜边为20cm,且两直角边长度比为3:4,求两直角边的长。,1.议一议:观察下图,用数格子的方法判断图中三

7、角形的三边长是否满足a,2,+b,2,=c,2,勾股定理的文化价值,(1)勾股定理是联系数学中数与形的第一定理。,(2)勾股定理反映了自然界基本规律,有文明的宇宙“人”都应该认识它,因而勾股定理图被建议作为与“外星人”联系的信号。,(3)勾股定理导致不可通约量的发现,引发第一次数学危机。,(4)勾股定理公式是第一个不定方程,为不定方程的解题程序树立了一个范式。,小结反思,我最大的收获;,我表现较好的方面;,我学会了哪些知识;,我还有哪些疑惑,学生反思:,(1)写数学日记并发挥你的聪明才智,去探索勾股定理、去研究勾股定理,你又有什么新的发现?,(2)尝试利用意大利著名画家达芬奇的方法验证勾股定理?,课题拓展,

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服