ImageVerifierCode 换一换
格式:DOC , 页数:7 ,大小:183.50KB ,
资源ID:7915684      下载积分:10 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/7915684.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(九年级数学下册:2.6何时获得最大利润教案(北师大版).doc)为本站上传会员【s4****5z】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

九年级数学下册:2.6何时获得最大利润教案(北师大版).doc

1、2.6 何时获得最大利润 教学目标 (一)教学知识点 1.经历探索T恤衫销售中最大利润等问题的过程,体会二次函数是一类最优化问题的数学模型,并感受数学的应用价值. 2.能够分析和表示实际问题中变量之间的二次函数关系,并运用二次函数的知识求出实际问题的最大(小)值,发展解决问题的能力. (二)能力训练要求 经历销售中最大利润问题的探究过程,让学生认识数学与人类生活的密切联系及对人类历史发展的作用,发展学生运用数学知识解决实际问题的能力. (三)情感与价值观要求 1.体会数学与人类社会的密切联系,了解数学的价值.增进对数学的理解和学好数学的信心. 2.认识到数学是解决实际问题和

2、进行交流的重要工具,了解数学对促进社会进步和发展人类理性精神的作用. 教学重点 1.探索销售中最大利润问题. 2.能够分析和表示实际问题中变量之间的二次函数关系,并运用二次函数的知识求出实际问题中的最大(小)值,发展解决问题的能力. 教学难点 运用二次函数的知识解决实际问题. 教学方法 在教师的引导下自主学习法. 教具准备 投影片三张 第一张:(记作§2.6 A) 第二张:(记作§2.6 B) 第三张:(汜作§2.6 C) 教学过程 Ⅰ. 创设问题情境,引入新课 [师]前面我们认识了二次函数,研究了二次函数的图象和性质,由简单的二次函数y=x2开始,然后是y=ax

3、2.y=ax2+c,最后是y=a(x-h)2,y=a(x-h)2+k,y=ax2+bx+c,掌握了二次函数的三种表示方式.怎么突然转到了获取最大利润呢?看来这两者之间肯定有关系.那么究竟有什么样的关系呢?我们本节课将研究有关问题. Ⅱ.讲授新课 一、有关利润问题 投影片:(§2.6 A) 某商店经营T恤衫,已知成批购进时单价是2.5元.根据市场调查,销售量与销售单价满足如下关系:在一段时间内,单价是13.5元时,销售量是500件,而单价每降低1元,就可以多售出200件. 请你帮助分析,销售单价是多少时,可以获利最多? 没销售单价为x(x≤13.5)元,那么 (1)销售量可以表

4、示为 ; (2)销售额可以表示为 ; (3)所获利润可以表示为 ; (4)当销售单价是 元时,可以获得最大利润,最大利润是 . [师]从题目的内容来看好像是商家应考虑的问题:有关利润问题.不过,这也为我们以后就业做了准备,今天我们就不妨来做一回商家.从问题来看就是求最值问题,而最值问题是二次函数中的问题.因此我们应该先分析题意列出函数关系式. 获利就是指利润,总利润应为每件T恤衫的利润(售价一进价)乘以T恤衫的数量,设销售单价为x元,则降低了(13.5-x)元,每降低1元,可多售出200件,降低

5、了(13.5-x)元,则可多售出200(13.5-x)件,因此共售出500+200(13.5-x)件,若所获利润用y(元)表示,则y=(x-2.5)[500+200(13.5-x)]. 经过分析之后,大家就可回答以上问题了. [生](1)销售量可以表示为500+200(13.5-x)=3200—200x. (2)销售额可以表示为x(3200-200x)=3200x-200x2. (3)所获利润可以表示为(3200x-200x2)-2.5(3200-200x)=-200x2+3700x-8000. (4)设总利润为y元,则 y=-200x2+3700x-8000 =-200(x-.

6、 ∵-200<0 ∴抛物线有最高点,函数有最大值. 当x==9.25元时, y最大= =9112.5元. 即当销售单价是9.25元时,可以获得最大利润,最大利润是9112.5元. 二、做一做 还记得本章一开始的“种多少棵橙子树”的问题吗?我们得到表示增种橙子树的数量x(棵)与橙子总产量y(个)的二次函数表达式y=(600-5x)(100+x)=-5x2+100x+60000. 我们还曾经利用列表的方法得到一个猜测,现在验证一下你的猜测是否正确?你是怎么做的?与同伴进行交流. [生]因为表达式是二次函数,所以求橙子的总产量y的最大值即是求函数的最大值. 所以y=-5x2+10

7、0x+60000 =-5(x2-20x+100-100)+60000 =-5(x-10)2+60500. 当x=10时,y最大=60500. [师]回忆一下我们前面的猜测正确吗? [生]正确. 三、议一议(投影片§2.6 B) (1)利用函数图象描述橙子的总产量与增种橙子树的棵数之间的关系. (2)增种多少棵橙子树,可以使橙子的总产量在60400个以上? [生]图象如上图. (1)当x<10时,橙子的总产量随增种橙子树的增加而增加;当x>10时,橙子的总产量随增种橙子树的增加而减小. (2)由图可知,增种6棵、7棵、8棵、9棵、10棵、11棵、12棵、13棵或14棵,

8、都可以使橙子总产量在60400个以上. 四、补充例题 投影片:(§2.6 C) 已知——个矩形的周长是24 cm. (1)写出这个矩形面积S与一边长a的函数关系式. (2)画出这个函数的图象. (3)当a长多少时,S最大? [师]分析:还是有关二次函数的最值问题,所以应先列出二次函数关系式. [生](1)S=a(12-a)=a2+12a=-(a2-12a+36-36)=-(a-6)2+36. (2)图象如下: (3)当a=6时,S最大=36. Ⅲ.课堂练习 P61 解:设销售单价为;元,销售利润为y元,则 y=(x-20)[400-20(x-30)] =-20

9、x2+1400x-20000 =-20(x-35)2+4500. 所以当x=35元,即销售单价提高5元时,可在半月内获得最大利润4500元. Ⅳ.课时小结 本节课经历了探索T恤衫销售中最大利润等问题的过程,体会了二次函数是一类最优化问题的数学模型,并感受了数学的应用价值. 学会了分析和表示实际问题中变量之间的二次函数关系,并运用二次函数的知识求出实际问题中的最大(小)值,提高解决问题的能力. Ⅴ.课后作业 习题2.6 Ⅵ.活动与探究 某商场销售某种品牌的纯牛奶,已知进价为每箱40元,生产厂家要求每箱售价在40~70元之间.市场调查发现:若每箱以50元销售,平均每天可销售90箱

10、价格每降低1元,平均每天多销售3箱,价格每升高1元,平均每天少销售3箱. (1)写出平均每天销售(y)箱与每箱售价x(元)之间的函数关系式.(注明范围) (2)求出商场平均每天销售这种牛奶的利润W(元)与每箱牛奶的售价x(元)之间的二次函数关系式(每箱的利润=售价-进价). (3)求出(2)中二次函数图象的顶点坐标,并求当x=40,70时W的值.在坐标系中画出函数图象的草图. (4)由函数图象可以看出,当牛奶售价为多少时,平均每天的利润最大?最大利润为多少? 解:(1)当40≤x≤50时,则降价(50-x)元,则可多售出3(50-x),所以y=90+3(50-x)=-3x+240.

11、当50

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服