ImageVerifierCode 换一换
格式:DOC , 页数:3 ,大小:38.50KB ,
资源ID:7904684      下载积分:10 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/7904684.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(六年级奥数题:抽屉原理(A).doc)为本站上传会员【s4****5z】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

六年级奥数题:抽屉原理(A).doc

1、十八 抽屉原理(1) 年级 班 姓名 得分 一、填空题 1.一个联欢会有100人参加,每个人在这个会上至少有一个朋友.那么这100人中至少有 个人的朋友数目相同. 2.在明年(即1999年)出生的1000个孩子中,请你预测: (1)同在某月某日生的孩子至少有 个. (2)至少有 个孩子将来不单独过生日. 3.一个口袋里有四种不同颜色的小球.每次摸出2个,要保证有10次所摸的结果是一样的,至少要摸 次. 4.有红、黄、蓝三种颜色的小珠子各4颗混放在口袋里,为了保证一次能取到2颗颜色相同的

2、珠子,一次至少要取 颗. 如果要保证一次取到两种不同颜色的珠子各2颗,那么一定至少要取出 颗. 5.从1,2,3…,12这十二个数字中,任意取出7个数,其中两个数之差是6的至少有 对. 6.某省有4千万人口,每个人的头发根数不超过15万根,那么该省中至少有 人的头发根数一样多. 7.在一行九个方格的图中,把每个小方格涂上黑、白两种颜色中的一种,那么涂色相同的小方格至少有 个. 8.一付扑克牌共有54张(包括大王、小王),至少从中取 张牌,才能保证其中必有3种花色. 9.五个同学在一起练习投蓝,共投进了41个球,那么至

3、少有一个人投进了 个球. 10.某班有37名小学生,他们都订阅了《小朋友》、《儿童时代》、《少年报》中的一种或几种,那么其中至少有 名学生订的报刊种类完全相同. 二、解答题 11.任给7个不同的整数,求证其中必有两个整数,它们的和或差是10的倍数. 12.在边长为1的正方形内任取51个点,求证:一定可以从中找出3点,以它们为顶点的三角形的面积不大于1/50. 13.某幼儿园有50个小朋友,现在拿出420本连环画分给他们,试证明:至少有4个小朋友分到连环画一样多(每个小朋友都要分到连环画). 14.能否在8´8的棋盘上的每一个空格中分别填入数字1,或2,或3,

4、要使每行、每列及两条对角线上的各个数字之和互不相同?请说明理由. ———————————————答 案—————————————————————— 1. 2 因为每个人至少有1个朋友,至多有99个朋友,将有1个朋友的人,2个朋友的人,…,99个朋友的人分成99类,在100个人中,总有两个人属于同一类,他们的朋友个数相同. 2. (1)3;(2)636 因为1999年有365天,故在1999年出生的孩子至少有(个)孩子的生日相同; 又因为1000-(365-1)=363,即至少有363个孩子将来不单独过生日. 3. 91 当摸出的2个

5、球颜色相同时,可以有4种不同的结果;当摸出的2个球颜色不同时,最多可以有3+2+1=6(种)不同结果.一共有10种不同结果. 将这10种不同结果看作10个抽屉,因为要求10次摸出结果相同,故至少要摸9´10+1=91(次). 4. 4;7 将三种不同颜色看作3个抽屉,对于第一问中为保证一次取到2颗相同颜色的珠子,一次至少要取1´3+1=4(颗)珠子. 对于第二问为了保证一次取到两种不同颜色珠子各2颗,一次至少要取4+(1´2+1)=7(颗)珠子. 5. 1 将1~12这十二个数组成这六对两数差为6的数组.任取7个数,必定有两个数差在同一组中,这一对数的差为6. 6. 267

6、 将4千万人按头发的根数进行分类:0根,1根,2根…,150000根共150001类. 因为40000000=(266´150001)+99743>266´150001,故至少有一类中的人数不少于266+1=267(个),即该省至少有267个人的头发根数一样多. 7. 7 将每10块颜色相同的木块算作一类,共3类.把这三类看作三个抽屉,而现在要保证至少有三块同色木块在同一抽屉中,那么至少要有2´3+1=7(块). 8. 29 将4种花色看作4个抽屉,为了保证取出3张同色花,那么应取尽2个抽屉由的2´13张牌及大、小王与一张另一种花色牌.计共取2´13+2+1=29(张)才行.

7、 9. 9 将5个同学投进的球作为抽屉,将41个球放入抽屉中,至少有一个抽屉中放了9个球,(否则最多只能进5´8=40个球). 10. 6 订阅报刊的种类共有7种:单订一份3种,订二份3种,订三分1种.将37名学生依他们订的报刊分成7类,至少有6人属于同一类,否则最多只有6´6=36(人). 11. 将整数的末位数字(0~9)分成6类: 在所给的7个整数中,若存在两个数,其末位数字相同,则其差是10的倍数;若此7数末位数字不同,则它们中必有两个属于上述6类中的某一类,其和是10的倍数. A B C E F G H 12. 将边长为1的正方形分成25个边条为的

8、正方形,在51个点中,一定有(个)点属于同一个小正方形. 不妨设A、B、C三点边长为的小正方形EFGH内,由于三角形ABC的面积不大于小正方形面积EFGH的,又EFGH的面积为.故三角形ABC的面积不大于. 13. 考虑最极端的情况,有3个小朋友分到1本,有3个小朋友分到2本,…,有3个小朋友分到16本,最后两个小朋友分到17本,那么一共至少要 3´(1+2+3+…+16)+2´17=442(本),而442>420,故一定有4个小朋友分了同样多的书. 14. 注意到8行、8列及两对角线共有18条“线”,每条线上有8个数字,要使每条线上的数字和不同,也就是需要每条线上的数字和有18种以上的可能. 但我们填入的数只有1、2、3三种,因此在每条线上的8个数字中,其和最小是8,最大是24,只有24-8+1=17(种). 故不可能使得每行,每列及两条对角线上的各个数字之和互不相等.

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服