ImageVerifierCode 换一换
格式:DOC , 页数:3 ,大小:33KB ,
资源ID:7849139      下载积分:10 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/7849139.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(多边形内角及教学设计.doc)为本站上传会员【仙人****88】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

多边形内角及教学设计.doc

1、 多边形内角和 教学设计 教学目标 认知目标 理解多边形有关概念; 理解多边形内角和公式的推导过程; 掌握多边形内角和的计算。 能力目标 掌握类比归纳、转化的学习方法; 培养学生思考、解决问题的能力 教学过程 教学步骤 教师活动 学生活动 设计意图 多边形概念 1、了解概念 ⑴请同学们回忆一下怎样的图形是三角形? ⑵那么怎样的图形叫做四边形? ⑶出示 分别叫什么? ⑷四边形、五边形、六边形都是多边形,同学们再想一想, 你能举出多边形的例子吗? 悄悄说,后个别回答⑵同学举手指名答⑶齐答 ⑷两两互说 学生利用三

2、角形、四边形的定义进行知识迁移,获得多边形的概念。 2、 理解概念的特征 ⑴投影显示多边形,n边形的概念,老师强调一遍。⑵投影显示:下列哪些图形是多边形?是多边形的请说明是几边形? ⑶下面进一步学习一些概念:多边形的对角线,在(b)(c)上画出并口述概念, 同学们请在准备的一张图形上画出至少一条对角线。⑷观察(b)(c)对角线位置有何不同? ⑸进而提出凸多边形概念,今后如果不说明,我们讲的多边形都是凸多边形。⑵齐答 个别答 ⑶先独立画后同桌交流 ⑷四人组讨论一分钟,组长回答 利用图示帮助学生理解概念及对n的认识,通过比较辨析强化凸多边形的特征。 公式推导 1、提出问题 ⑴我们知道三角形

3、内角和是多少? ⑵那么四边形、五边形、常见的六边形螺帽的内角和是多少呢?多边形的内角和有没有计算方法呢?这就是我们这节课研究的课题。板书课题:多边形的内角和 ⑴齐答 ⑵引发学生思考 创设情景,激发学生兴趣,并揭示课题。 2、动手操作实践,自己探索 ⑴请同学们利用数学工具,先把你们手上的多边形的内角和计算出来,并完成表格(同桌多边形边数不一样)老师巡视、指导可能有的方法:⑴用量角器量角 ⑵用剪刀剪成三角形或四边形 ⑶画对角线分割多边形为三角形 逐步启发得到最佳方法:通过对角线划分成三角形,转化为利用 三角形内角和求出。⑴自己动手、动脑 学生利用学具进行操作、思考、解决问题的多种方法,提供学生

4、主动探索的时间、空间。 3、观察、寻找规律 ⑴请问同学们求出的内角和是多少?⑵你是用什么方法求出来的呢?有几种方法?哪种方法最好呢? ⑶交流表格。⑷四、五、六、七边形内角和之间有何规律? ⑴对不同边数多边形分别请同学回答 ⑵举手请同学上讲台讲⑶交流 ⑷四人小组讨论,组长发言 体现“有方法、方法多、方法好”的教 学层次,通过填表便于学生寻找规律,发现内在联系,进一步可做出猜想。 4、猜想 那么对于n边形猜想一下内角和计算公式是什么?(老师参与讨论) 小组之间讨论,组长发言鼓励学生大胆猜想、大胆发现。 5、验证 ⑴就我们已求出的特殊多边形的内角和,通过公式再求一次是否相符 ⑵请同学们自己举

5、一个例子验证一下对不对?有没有反例? ⑴独立举例检验⑵两两交流 6、小结归纳 通过动手操作,我们找到了解决问题的几种方法,知道利用多边形的对角线将多边形划分成三角形转化为利用三角形内角和来求多边形内角和的方法最好。又通过寻找规律,猜想发现多边形内角和计算方法,并加以验证,接着就可以从特殊到一般归纳出计算公式是什么? 自己说 通过类比归纳,完成从特 殊到一般的认识、体现数学认识的一般过程。 7、巩固练习 ⑴求12边形的内角和度数 ⑵如果12边形的每一个内角相等,那么每个内角是多少度 ⑶已知多边形的内角和为 1800°,这个多边形是几边形?老师巡视、指导。集体做,三个学生上黑板做并请请其他同

6、学讲评 加深对公式的理解 总结 本节课我们学习了多边形的内角和公式,重点是它的推导过程,我们采取的方法是通过对角线划分,把多边形分成若干个三角形,利用熟悉的三角形内角和来做,从特殊的多边形归纳出n多边形的内角和公式是(n-2)·180°这种学习方法我们在今后的学习过程中要学用、会用。学生和老师一起总结 再次强调 推导公式方法。 提高 ⑴投影:在n边形一边上任取一点P,连结点P与多边形的每一个顶点,查得几个三角形,图中取n=6的情形,你能否根据这样的划分多边形的方法来说明n边形的内角和等于(n-2)·180°(教师参与讨论)⑵想一想是否还有其它的划分方法? ⑴全班交流、汇报⑵小组讨论

7、汇报 掌握转化思想 教学反思 教师 如何营造良好的学习氛围,发挥学生的学习积极性与创造性?。 老师要放下威严的架子,从教学垄断者转变为组织引导者,这也正是课程改革新形势下的教师必须做到的一点,只有这样,才能建立平等的民主的师生关系,从而使老师在学生中产生强烈的感召力,使教学不再是冷冰冰的理智活动,而是学生全身心投入的、充满激情的学习活动。本课通过从多边形的一个顶点引出的对角线把多边形分成n-2个三角形,得出:n边形的内角和为(n-2)X180°。得出结论后,老师并没有到此就结束,而是鼓励学生进行探究。让学生试着在多边形内任取一点,由这点向各顶点连线,是否也能推导出内角和公式呢?学生们

8、一下子来了兴趣,纷纷在练习本上画图、研究,有的学生相互之间还进行了讨论,进行新的探讨。 学生参与 不多时,学生甲兴奋地站了起来,说出了他的推导方法:有几条边就能分成几个三角形,这些三角形所有内角和为nX180°。由于以点p为顶点的周角不属于多边形的内角,应从中减去,从而就得出n边形的内角和是(n-2)X180°。接着老师对他进行了鼓励,和全班同学为他鼓掌祝贺,这个同学的高兴劲就甭提了。同时全班学生也对此问题产生了极大的兴趣。这时,学生乙(是个女生)也站了起来,“老师,我还有第三种方法”。她很自信地说出了她推导的道理,并要求到黑板前画图讲解,老师又对她进行了鼓励,“好,你来当老师,我做学生”

9、只见她在黑板上画了图,又在其中一边上取一点p,然后向各顶点连线,也得到了多个三角形,分割成的三角形的个数比边数少1,所以这些三角形所有的内角和为(n-1)X180°,由于所有三角形的其中一个顶点都在点p上,组成一个平角,不属于多边形的内角,应减去,因此,多边形的内角和为(n-1)X180°-180°,即为(n-2)X180°。这时,全班学生禁不住鼓起掌,老师也为这个学生高兴地鼓掌。看到学生研究问题的兴趣很浓,老师顺水推舟,激励学生们继续探究,既然已有了三种方法,那么有没有第四种方法呢?学生们这时的兴致更浓了,开始讨论、探究。过了不久,学生丙站起来,郑重地向全班学生说:“第四种方法有了!”其他

10、学生迫不及待地想知道他的想法,就连老师当时也没想到他能找到第四种方法。他高兴地走到黑板前,拿起粉笔在黑板上画了个多边形,在多边形的外边取了个点p,然后从点p向和它不相邻的顶点连线,这样,把多边形分成了2个三角形和(n—3)个四边形,这2个三角形的内角和为180°X2,(n-3)个四边形的内角和为(n-3)X 360°,总和为180°X2+(n-3)X 360°,在这个总和里,连了几条线,就多了几个平角,应减去。n边形能连(n-2)条,所以减(n-2)个平角,即180°X2+(n-3)X 360°-(n-2)X180°等于(n-2)X180°。这时,整个教室里又爆发出更热烈更长久的掌声。可想而知,此时同学们的心情是多么激动啊,在他们心目中,数学已经不再是那么枯燥无味了。或许,他们感觉到数学离他们那么近,那么有趣,又那么奇妙。 总结 掌声之后,老师鼓励同学们,数学的奥秘很深,永无止境,你不研究它,感到枯燥,你研究它,感到趣味无穷。数学就是这样。

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2026 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服