ImageVerifierCode 换一换
格式:DOC , 页数:4 ,大小:413.67KB ,
资源ID:7825047      下载积分:10 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/7825047.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(小升初数学常考十个知识点3.doc)为本站上传会员【pc****0】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

小升初数学常考十个知识点3.doc

1、小升初数学常考十个知识点(配详解) 第三讲 最值问题 内容概述 均值不等式,即和为定值的两数的乘积随着两数之差的增大而减小.各种求最大值或最小值的问题,解题时宜首先考虑起主要作用的量,如较高数位上的数值,有时局部调整和枚举各种可能情形也是必要的. 典型问题 1.有4袋糖块,其中任意3袋的总和都超过60块.那么这4袋糖块的总和最少有多少块? 【分析与解】 方法一:设这4袋为A、B、C、D,为使4袋糖块的总和最少,则每袋糖应尽量平均,有A、B、C袋糖有20、20、21块糖. 则当A、B、D三袋糖在一起时,为了满足条件,D袋糖不少于21块,验证A、B、

2、C、D这4袋糖依次有20,20,2l,2l时满足条件,且总和最少. 这4袋糖的总和为20+20+21+21=82块. 方法二:设这4袋糖依次有a、b、c、d块糖, 有,①+②+③+④得:3(a+b+c+d)≥244,所以a+b+c+d≥81,因为a+b+c+d均是整数,所以a+b+c+d的和最小是82. 评注:不能把不等式列为,如果这样将①+②+③+④得到3(a+b+c+d)>240,a+b+c+d>80,因为a、b、c、d均是整数,所以a+b+c+d的和最小是81.至于为什么会出现这种情况.如何避免,希望大家自己解决. 2.用1,3,5,7,9这5个数字组成一个三位

3、数ABC和一个两位数DE,再用O,2,4,6,8这5个数字组成一个三位数FGH和一个两位数IJ.求算式ABC×DE-FGH×IJ的计算结果的最大值. 【分析与解】 为了使ABC×DE-FGH×IJ尽可能的大,ABC×DE尽可能的大,FGH×IJ尽可能的小. 则ABC×DE最大时,两位数和三位数的最高位都最大,所以为7、9,然后为3、5,最后三位数的个位为1,并且还需这两个数尽可能的接近,所以这两个数为751,93. 则FGH×IJ最小时,最高位应尽可能的小,并且两个数的差要尽可能的大,应为468×20. 所以ABC×DE-FGH×IJ的最大值为751×93-468×2

4、0=60483. 评注:类似的还可以算出FGH×IJ-ABC×DE的最大值为640×82-379×15=46795. 3.将6,7,8,9,10按任意次序写在一圆周上,每相邻两数相乘,并将所得5个乘积相加,那么所得和数的最小值是多少? 【分析与解】 我们从对结果影响最大的数上人手,然后考虑次大的,所以我 们首先考虑10,为了让和数最小,10两边的数必须为6和7. 然后考虑9,9显然只能放到图中的位置,最后是8,8的位置有两个位置可放,而且也不能立即得到哪个位置的乘积和最小,所以我们两种情

5、况都计算. 8×7+7×10+10×6+6×9+9×8=312; 9×7+7×10+10×6+6×8+8×9=313. 所以,最小值为312. 4.一个两位数被它的各位数字之和去除,问余数最大是多少? 【分析与解】设这个两位数为=lOa+b,它们的数字和为a+b,因为lOa+b=(a+b)+9a,所以lOa+b≡9a(mod a+b), 设最大的余数为k,有9a≡k(mod a+b). 特殊的当a+b为18时,有9a=k+18m,因为9a、18m均是9的倍数,那么k也应是9的倍数且小于除数18,即0,9,也就是说余数最大为9; 所以当除

6、数a+b不为18,即最大为17时, :余数最大为16,除数a+b只能是17,此时有9a=15+17m,有 (t为可取0的自然数),而a是一位数,显然不满足; :余数其次为15,除数a+b只能是17或16, 除数a+b=17时,有9a=15+17m,有,(t为可取0的自然数),a是一位数,显然也不满足; 除数a+b=16时,有9a=15+16m,有(t为可取0的自然数),因为a是一位数,所以a只能取7,对应b为16-7=9,满足; 所以最大的余数为15,此时有两位数79÷(7+9)=4……15. 5.用1,2,3,4,5,6,7,8,9这9个数字各一次,组成一个

7、被减数、减数、差都是三位数的正确的减法算式,那么这个算式的差最大是多少? 【分析与解】 考虑到对差的影响大小,我们先考虑百位数,为了让差最大,被减数的百位为9,减数的百位为1,如果差的百位为8,那算式就是如下形式:剩下的6个数字为2、3、4、5、6、7,因为百位数字为8,所以我们可以肯定被减数的十位数字比减数要大,而且至少大2,因为1已经出现在算式中了,算式的可能的形式如下: 得数的十位只可能是减数和被减数的十位数字之差,或者小1,可能的算式形式如下: 但这时剩下的数都无法使算式成立.再考虑差的百位数字为7的情况,这时我们可以肯定减数的十位数比被减数要大,为了使

8、差更大,我们希望差值的十位为8,因此,算式可能的形式为: 再考虑剩下的三个数字,可以找到如下几个算式: ,所以差最大为784. 6. 4个不同的真分数的分子都是1,它们的分母有2个是奇数、2个是偶数,而且2个分母是奇数的分数之和与2个分母是偶数的分数之和相等.这样的奇数和偶数很多,小明希望这样的2个偶数之和尽量地小,那么这个和的最小可能值是多少? 【分析与解】 设这四个分数为上、、、(其中m、n、a、b均为非零自然数) 有+=+,则有-=-, 我们从m=1,b=1开始试验: =+=+,=+=+, =+=+,=+=+, =+=+,﹍ 我们发现,和分解后

9、具有相同的一项,而且另外两项的分母是满足一奇一偶,满足题中条件: +=+,所以最小的两个偶数和为6+10=16. 7.有13个不同的自然数,它们的和是100.问其中偶数最多有多少个?最少有多少个? 【分析与解】 13个整数的和为100,即偶数,那么奇数个数一定为偶数个,则奇数最少为2个,最多为12个;对应的偶数最多有11个,最少有1个. 但是我们必须验证看是否有实例符合. 当有11个不同的偶数,2个不同的奇数时,11个不同的偶数和最小为2+4+6+8+10+12+14+16+18+20+22=132,而2个不同的奇数和最小为1+3=4.它们的和最小为132+4=13

10、6,显然不满足: 当有9个不同的偶数,4个不同的奇数时,9个不同的偶数和最小为2+4+6+8+10+12+14+16+18=90,而4个不同的奇数和最小为1+3+5+7=16,还是大于100,仍然不满足; 当有7个不同的偶数,6个不同的奇数时,7个不同的偶数和最小为2+4+6+8+10+12+14=56,6个不同的奇数和为1+3+5+7+9+11:36,满足,如2,4,6,8,10,12,22,1,3,5,7,9,11的和即为100. 类似的可知,最少有5个不同的偶数,8个不同的奇数,有2,4,8,10,16,1.3.5,7,9,11,13,15满足. 所以,满足题意的13个数中,偶数最多有7个,最少有5个.

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服