ImageVerifierCode 换一换
格式:DOC , 页数:13 ,大小:238.50KB ,
资源ID:782420      下载积分:11 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/782420.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【胜****】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【胜****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(分式方程及应用复习教案.doc)为本站上传会员【胜****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

分式方程及应用复习教案.doc

1、。分式方程及应用复习教案教学目标:1.使学生进一步掌握解分式方程的基本思想、方法、步骤,并能熟练运用各种技巧解方程,会检验分式方程的根。2.能解决一些与分式方程有关的实际问题,具有一定的分析问题、解决问题的能力和应用意识教学重点解分式方程的基本思想和方法。教学难点解决分式方程有关的实际问题。教学过程一:【课前预习】(一):【知识梳理】1分式方程:分母中含有 的方程叫做分式方程2分式方程的解法:解分式方程的关键是 (即方程两边都乘以最简公分母),将分式方程转化为整式方程;3分式方程的增根问题: 增根的产生:分式方程本身隐含着分母不为0的条件,当把分式方程转化为整式方程后,方程中未知数允许取值的范

2、围扩大了,如果转化后的整式方程的根恰好使原方程中分母的值为0,那么就会出现不适合原方程的根的增根; 验根:因为解分式方程可能出现增根,所以解分式方程必须验根。验根的方法是将所求的根代人 或 ,若 的值为零或 的值为零,则该根就是增根。4分式方程的应用:列分式方程解应用题与列一元一次方程解应用题类似,但要稍复杂一些解题时应抓住“找等量关系、恰当设未知数、确定主要等量关系、用含未知数的分式或整式表示未知量”等关键环节,从而正确列出方程,并进行求解另外,还要注意从多角度思考、分析、解决问题,注意检验、解释结果的合理性5通过解分式方程初步体验“转化”的数学思想方法,并能观察分析所给的各个特殊分式或分式

3、方程,灵活应用不同的解法,特别是技巧性的解法解决问题。6分式方程的解法有 和 。(二):【课前练习】 1. 把分式方程 的两边同时乘以(x-2), 约去分母,得( )A1-(1-x)=1 B1+(1-x)=1 C1-(1-x)=x-2 D1+(1-x)=x-22. 方程 的根是( ) A.2 B. C.2, D.2,13. 当 =_时,方程 的根为 4. 如果 ,则 A=_ B_.5. 若方程 有增根,则增根为_,a=_.二:【经典考题剖析】 1. 解下列分式方程:分析:(1)用去分母法;(2)(3)(4)题用化整法;(5)(6)题用换元法;分别设 , , 解后勿忘检验。2. 解方程组: 分析

4、:此题不宜去分母,可设 A, B得: ,用根与系数的关系可解出A、B,再求 ,解出后仍需要检验。3. 若关于x的分式方程 有增根,求m的值。4. 某市今年1月10起调整居民用水价格,每立方米水费上涨25,小明家去年12月份的水费是18元,而今年5月份的水费是36元,已知小明家今年5月份的用水量比去年12月份多6 m3,求该市今年居民用水的价格解:设市去年居民用水的价格为x元m3,则今年用水价格为(1+25) x元m3根据题意,得 经检验,x=18是原方程的解所以 答:该市今年居民用水的价格为 225 x元m3点拨:分式方程应注意验根本题是一道和收水费有关的实际问题解决本题的关键是根据题意找到相

5、等关系:今年5月份的用水量一去年12月份的用量=6m3.5. 某地生产一种绿色蔬菜,若在市场上直接销售,每吨利润1000元;经粗加工后销售,每吨利润可达4500元;经精加工后销售每吨利润涨至7500元。当地一公司收获这种蔬菜140吨,其加工厂生产能力是:如果进行粗加工,每天可加工16吨;如果进行精加工,每天可加工6吨。但两种加工方式不能同时进行,受季节等条件限制,公司必须在15天内将这蔬菜全部销售或加工完毕,为此公司初定了三种可行方案:方案一:将蔬菜全部进行粗加工;方案二:尽可能多的对蔬菜进行精加工,没来得及加工的蔬菜在市场上直接销售;方案三:将部分蔬菜进行精加工,其余蔬菜进行粗加工,并恰好1

6、5天完成。你认为哪种方案获利最多?为什么?略解:第一种方案获利630 000元;第二种方案获利725 000元;第三种方案先设将 吨蔬菜精加工,用时间列方程解得 ,故可算出其获利810000元,所以应选择第三种方案。三:【课后训练】1.方程 去分母后,可得方程( ) 2.解方程 ,设 ,将原方程化为( ) 3. 已知方程 的解相同,则a等于( )A3 B3 C、2 D24. 方程 的解是 。5. 分式方程 有增根x=1,则 k的值为_6. 满足分式方程 的x值是( ) A2 B2 C1 D07. 解方程: 8. 先阅读下面解方程x 2的过程,然后填空. 解:(第一步)将方程整理为x2 0;(第

7、二步)设y ,原方程可化为y2y0;(第三步)解这个方程的 y10,y21(第四步)当y0时,0;解得 x2,当y1时, 1,方程无解;(第五步)所以x2是原方程的根以上解题过程中,第二步用的方法是 ,第四步中,能够判定方程 1无解原根据是 。上述解题过程不完整,缺少的一步是 。 9. 就要毕业了,几位要好的同学准备中考后结伴到某地游玩,预计共需费用1200元,后来又有2名同学参加进来,但总费用不变,于是每人可少分摊30元,试求原计划结伴游玩的人数四:【课后小结】布置作业第十二章 分式和分式方程总体说明本节是第二章分式的最后一节,占两个课时,这是第二课时,它主要让学生回顾在分式方程解法的基本步

8、骤与解分式方程应用题的基本步骤,让学生能从具体的情境中抽象出数量关系和变化规律,并用符号表示,发展学生的符号感通过螺旋式上升的认识,让学生逐步了解怎样解决现实生活中的实际问题,培养学生的代数表达能力,使学生对实际问题的解决能有更深的认识和更强的数学能力及数学素养一、学生知识状况分析学生的技能基础:学生已经学习了分式方程及分式方程应用题等有关概念,对解决与分式方程相关的实际问题有了一定的基础与认识学生活动经验基础: 在学习解方程及解决方程的应用题等实际问题的过程中,学生已经经历了观察、探究、讨论等活动方法,获得了解决实际问题所必须的一些数学活动经验基础,同时在以前的数学学习中学生已经经历了很多合

9、作学习的经验,具备了一定的合作与交流的能力二、教学任务分析在本章的学习中,学生已经掌握了分式方程和它的应用,本课时安排让学生对本部分内容进行回顾与思考,旨在把学生头脑中零散的知识点用一条线有机地组合起来,从而形成一个知识网络,使学生对这些知识点不再是孤立地看待,而是在应用这些知识时,能顺藤摸瓜地找到对就的及相关的知识点,同时能把这些知识加以灵活运用,因此,本节课的目标是:知识与技能: (1)能熟练地解分式方程; (2)能从具体的情境中抽象出数量关系和变化规律,并用符号表示数学能力:(1)通过解分式方程,使学生了解转化的思想方法;(2)关注对算理的理解,发展学生的代数表达能力,运算能力和有条理地

10、思考问题的能力;(2)提高学生解决实际问题的能力,发展学生的符号感,提高分析问题和解决问题的能力情感与态度:(1)让学生了解数学与生活是不可分离的,生活是数学的载体;(2)通过经历观察、归纳、类比、猜想等思维过程,进而学会反思自己的思维过程三、教学过程分析 本节课设计了六个教学环节:回顾做一做试一试想一想反馈练习课后练习第一环节 回顾活动内容:1、解分式方程有哪些步骤? 2、解分式方程应用题有哪些步骤?活动目的:通过学生的回顾与思考,加深学生对解分式方程的步骤及解应用题的步骤的认识教学效果:有了前几节课的学习,学生对解分式方程的步骤及解应用题的步骤有了较清楚的认识与理解第二环节 做一做活动内容

11、: 解下列分式方程: (1) (2) (3) (4)活动目的:通过对分式方程的解答,使学生明白解分式方程的关键是把分式方程转化为整式方程教学效果:学生能够理解解分式方程的步骤,但有部分学生在去分母时,会出现整数不乘公分母,如第(2)(3)两小题第三环节 试一试活动内容:1、在社会主义新农村建设中,某乡镇决定对一段公路进行改造已知这项工程由甲工程队单独做需要40天完成;如果由乙工程队先单独做10天,那么剩下的工程还需要两队合做20天才能完成(1)求乙工程队单独完成这项工程所需的天数;(2)求两队合做完成这项工程所需的天数2、A、B两地相距80千米,甲骑车从A地出发1小时后,乙也从A地出发,用相当

12、于甲1.5倍的速度追赶,当追到B地时,甲比乙先到20分钟,求甲、乙的速度活动目的:(1)让学生能从具体的情境中抽象出数量关系和变化规律,并用符号表示,发展学生的符号感(2)通过解决生活中的实际问题,提高分析问题和解决问题的能力教学效果:由于在前一阶段学生已经有了一些解决实际问题的基础,学生在解决比较简单的问题时较好,但也有少数学生很难把生活中的实际问题与数学结合到一起,思维上有一定的障碍第四环节 想一想活动内容: 某顾客第一次在商店买了若干件小商品花去了5元,第二次再去买该小商品时,发现每一打(12件)降价0.8元,他这一次购买该小商品的数量是第一次的两倍,这样,第二次共花去2元,问他第一次买

13、的小商品是多少件?活动目的:通过螺旋式上升的认识,进一步发展学生的符号感,提高解决实际问题的能力教学效果:学生对抽象思维较难理解,但可以进行现场模拟这个情景,使学生从感性认识中发展到抽象思维,让大多数学生能够找到解决问题的钥匙第五环节 反馈练习活动内容: 1、选择题:(1)一个工人生产零件,计划30天完成,若每天多生产5个,则在26天里完成且多生产10个,若设原计划每天生产x个,则这个工人原计划每天生产多少个零件?根据题意可列方程( ) A、 B、 C、 D、(2)几名同学包租一辆面包车去旅游,面包车的租价为180元,后来又增加了两名同学,租车价不变,结果每个同学比原来少分摊了3元车费若设参加

14、旅游的学生共有x人,则根据题意可列方程 ( ) A、 B、 C、 D、2、解下列方程: (1) (2)3、某厂第一车间加工一批毛衣,4天完成了任务的一半,这时,第二车间加入,两车间共同工作两天后就完成了任务并超额完成任务的,求第二车间单独加工这批毛衣所用的天数活动目的:通过设置恰当的、有一定梯度的题目,关注学生知识技能的发展和不同层次的需求 教学效果:部分学生能举一反三,较好地掌握分式方程及其应用题的有关知识与解决生活中的实际问题等基本技能第六环节 课后练习课本第96页复习题第4、9、10、11题;四、教学反思分式方程 同步练习1在有理式,(x+y),中,分式有( ) A1个 B2个 C3个

15、D4个2.下列方程中=1,=2,=,+=5中是分式方程的有( ) A B C D3如果分式无意义,则x的值是( ) Ax0 Bx Cx= Dx-4分式,的最简公分母为( ) A(x+2)(x-2) B-2(x+2)(x-2) C2(x+2)(x-2) D-(x+2)(x-2)5.把分式方程=化为整式方程,方程两边需同时乘以( )A2x B2x-4 C2x(x-2) D2x(2x-4)6.如果解分式方程-=-2出现增根,则增根为( ) A0或2 B0 C2 D17.若关于x的方程-=有增根x=-1,那么k的值为( ) A1 B3 C6 D98在解方程+=1时,需要去分母时,可以把方程两边都乘以_

16、,根据是_9、 若方程有增根,则增根为 .10、若方程有增根,则的值为 .11、若关于的方程的解为,则= .12、若分式方程的解为,则= .13、解方程: +=; -1=14、若关于x的方程-=有增根,求增根和k的值15、 若关于的分式方程的解为正数,求的取值范围16、关于的方程的解大于零, 求的取值范围分式方程 同步学习1、分式当x _时分式的值为零。2、当x _时分式有意义。3、要使的值相等,则x=_。4、若关于x的分式方程无解,则m的值为_5若关于x的分式方程在实数范围内无解,则实数a=_6已知,则 7、若方程有增根,则增根为 .8、已知关于x的方程=-的解为x=-,则m=_9、 已知a

17、6,则(a)2 = 10、已知:,用x的代数式表示y应是( )A By-x+2 C Dy -7x-211、一根蜡烛在凸透镜下成实像,物距为U像距为V,凸透镜的焦距为F,且满足,则用U、V表示F应是( )(A) (B) (C) (D)12、 若分式方程有增根,则的值为( )(A)4 (B)2 (C)1 (D)013解分式方程: 14解方程:15甲做180个机器零件与乙做240个机器零件所用的时间相同,已知两人一小时共做70个机器零件,每人每小时各做多少个机器零件?16、某校师生去离校15km的花果园参观,张老师带领服务组与师生队伍同时出发,服务组的行进速度是师生队伍的2倍,以便提前30分钟到达做

18、好准备,求服务组与师生队伍的行进速度。课题:分式方程的应用(第3课时)教学目标:会列出分式方程解决简单的实际问题,并能根据实际问题的意义检验所得的结果是否合理。 教学重点:如何结合实际分析问题,列出分式方程教学难点:分析过程,得到等量关系教学过程:一、预习导学:1、 解分式方程的一般步骤:(标注每一步的注意点)2、解方程:(1)=; (2)+=2.二、交流成果:三、合作探究:1、为迎接市中学生田径运动会,计划由某校八年级(1)班的3个小组制作240面彩旗,后因一个小组另有任务,改由另外两个小组完成制作彩旗的任务。这样,这两个小组的每个同学就要比原计划多做 4面。如果这3个小组的人数相等,那么每

19、个小组有多少名学生?分析:(1)本题中的等量关系是什么?(2)你会根据等量关系列出分式方程吗? (3) 你还能其它解法吗? 2、甲、乙两公司各为“见义勇为基金会”捐款30000元,已知乙公司比甲公司人均多捐款20元,且甲公司的人数比乙公司的人数多20%。问甲、乙两公司各有多少人?方法一: 方法二:3、小明买软面笔记本共用去12元,小丽买硬面笔记本共用去21元,已知每本硬面笔记本比软面笔记本贵1。2元,小明和小丽能买到相同本数的笔记本吗?方法一: 方法二:4、总结用分式方程解实际问题的一般步骤:5、某市从今年1月1日起调整居民的用水价格,每立方米水费上涨。小丽家去年12月份的水费是15元,而今年

20、7月份的水费则是30元,已知小丽家今年7月份的用水量比去年12月份的用水量多5,求该市今年居民用水的价格。四、课时小结1、用分式方程解实际问题的一般步骤:2、用分式方程解实际问题中的检验有哪几层含义:五、达标测试:1、解方程:(1)= (2)=42、小丽与小明同时为艺术节制作小红花,小明每小时比小丽多做2朵,那么小明做100朵小红花与小丽做90朵小红花所用时间相等吗?3、改善生态环境,防止水土流失,某村计划在荒坡上种960棵树,由于青年志愿者的支援,每日比原计划多种1/3,结果提前4天完成任务,原计划每天种多少棵数?4、市为了构建城市立体道路网络,决定修建一条轻轨铁路,为使工程提前半年完成,需将原定的工作效率提高25%。原计划完成这项工程需要多少个月?THANKS !致力为企业和个人提供合同协议,策划案计划书,学习课件等等打造全网一站式需求欢迎您的下载,资料仅供参考-可编辑修改-

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服