ImageVerifierCode 换一换
格式:DOC , 页数:30 ,大小:1.60MB ,
资源ID:7775625      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
图形码:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/7775625.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请。


权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4009-655-100;投诉/维权电话:18658249818。

注意事项

本文(【备战2013年】历届高考数学真题汇编专题14_复数_理(2000-2006).doc)为本站上传会员【pc****0】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

【备战2013年】历届高考数学真题汇编专题14_复数_理(2000-2006).doc

1、 【2006高考试题】 一、选择题(共11题) 2.(北京卷)在复平面内,复数对应的点位于 (A)第一象限 (B)第二象限 (C)第三象限 (D)第四象限 解:故选D 3.(福建卷)设a、b、c、d∈R,则复数(a+bi)(c+di)为实数的充要条件是 A.ad-bc=0 B.ac-bd=0 C. ac+bd=0 D.ad+bc=0 4.(广东卷)若复数满足方程,则 A. B. C. D. 解析:由,故选D. 5.(江西卷)已知复数z满足(+

2、3i)z=3i,则z=( ) A. B. C. D. 解:故选D。 6.(全国卷I)如果复数是实数,则实数 A. B. C. D. 解析:复数=(m2-m)+(1+m3)i是实数,∴ 1+m3=0,m=-1,选B. 8.(陕西卷)复数等于( ) A.1-i B.1+i C.-1+ i D.-1-i 解析: 复数=,选C. 11.(浙江卷)已知 (A)1+2i

3、 (B) 1-2i (C)2+i (D)2- i 【考点分析】本题考查复数的运算及性质,基础题。 解析:,由、是实数,得 ∴,故选择C。 二、填空题(共4题) 12.(湖北卷)设为实数,且,则 。 解:, 而 所以,解得x=-1,y=5, 所以x+y=4。 13.(上海卷)若复数同时满足-=2,=(为虚数单位),则= . 解:已知; 14.(上海卷)若复数满足(为虚数单位),其中则。 【2005高考试题】 1(广东卷)若,其中、,使虚数单位,则(D)

4、 (A)0(B)2(C)(D)5 2.(北京卷)若 , ,且为纯虚数,则实数a的值为 . 3. (福建卷)复数的共轭复数是 ( B ) A. B. C. D. 4. (湖北卷) ( C ) A. B. C. D. 5. (湖南卷)复数z=i+i2+i3+i4的值是  (B)   A.-1   B.0   C.1   D.i 6. (辽宁卷)复数在复平面内,z所对应的点在 (B ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 7. (全国卷II) 设、、、,若为实数,则 ( A) (A) (B) (C) (D)

5、 8. (全国卷III) 已知复数. 9. (山东卷)(1) ( D ) (A) (B) (C)1 (D) 10. (天津卷)2.若复数(a∈R,i为虚数单位位)是纯虚数,则实数a的值为 ( C ) A.-2 B.4 C.-6 D.6 11. (浙江卷)在复平面内,复数+(1+i)2对应的点位于( B ) (A) 第一象限 (B) 第二象限 (C) 第三象限 (D)第四象限 12. (重庆卷) ( A )

6、A. B.- C. D.- 13. (江西卷)设复数:为实数,则x=( A) A.-2 B.-1 C.1 D.2 14.(上海)在复数范围内解方程(i为虚数单位) 【2004高考试题】 1.(北京)当时,复数在复平面上对应的点位于( D ) A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限 2.(上海)若复数满足,则的实部是 1 。 3.(湖北)复数的值是 ( A ) A.-16 B.16 C. D. 4.(湖南)复数的值是 ( D ) A. B.- C.4 D.-4 【2003高考试题】 ※3.(2002京

7、皖春,4)如果θ∈(,π),那么复数(1+i)(cosθ+isinθ)的辐角的主值是( ) A.θ+ B.θ+ C.θ D.θ+ 4.(2002全国,2)复数(i)3的值是( ) A. -i B.i C.-1 D.1 5.(2002上海,13)如图12—1,与复平面中的阴影部分(含边界)对应的复数集合是( ) 图12—1 ※6.(2001全国文,5)已知复数z=,则arg是( ) A. B. C. D. ※9.(2000上海理,13)复数z=(i是虚数单位)的三角形式是( )

8、A.3[cos()+isin()] B.3(cos+isin) C.3(cos+isin) D.3(cos+isin) 10.(2000京皖春,1)复数z1=3+i,z2=1-i,则z=z1·z2在复平面内的对应点位于( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 ※12.(1998全国,8)复数-i的一个立方根是i,它的另外两个立方根是( ) A. B. C.± D.± 13.(1996全国,4)复数等于( ) A.1+i B.-1+i C.1-

9、i D.-1-i 14.(1994上海,16)设复数z=-i(i为虚数单位),则满足等式zn=z且大于1的正整数n中最小的是( ) A.3 B.4 C.6 D.7 15.(1994全国,9)如果复数z满足|z+i|+|z-i|=2,那么|z+i+1|的最小值是( ) A.1 B. C.2 D. 二、填空题 16.(2003上海春,6)已知z为复数,则z+>2的一个充要条件是z满足 . 17.(2002京皖春,16)对于任意两个复数z1=x1+y1i,z2=x2+y2i(x1、y1

10、x2、y2为实数),定义运算“⊙”为:z1⊙z2=x1x2+y1y2.设非零复数w1、w2在复平面内对应的点分别为P1、P2,点O为坐标原点.如果w1⊙w2=0,那么在△P1OP2中,∠P1OP2的大小为 . 18.(2002上海,1)若z∈C,且(3+z)i=1(i为虚数单位),则z= . 19.(2001上海春,2)若复数z满足方程i=i-1(i是虚数单位),则z=_____. 20.(1997上海理,9)已知a=(i是虚数单位),那么a4=_____. 21.(1995上海,20)复数z满足(1+2i)=4+3i,那么z=_____. 三、解答题

11、 26.(2001上海理,20)对任意一个非零复数z,定义集合Mz={w|w=z2n-1,n∈N}. (Ⅰ)设α是方程x+的一个根,试用列举法表示集合Mα; (Ⅱ)设复数ω∈Mz,求证:MωMz. 27.(2001上海文,20)对任意一个非零复数z,定义集合Mz={w|w=zn,n∈N}. (Ⅰ)设z是方程x+=0的一个根,试用列举法表示集合Mz.若在Mz中任取两个数,求其和为零的概率P; (Ⅱ)若集合Mz中只有3个元素,试写出满足条件的一个z值,并说明理由. 28.(2000上海春,18)设复数z满足|z|=5,且(3+4i)z在复平面上对应的点在第二、四象限的角平分线上,|z

12、-m|=5(m∈R),求z和m的值. ※30.(1999全国理,20)设复数z=3cosθ+i·2sinθ.求函数y=θ-argz(0<θ<)的最大值以及对应的θ值. ※31.(1999上海理,19)已知方程x2+(4+i)x+4+ai=0(a∈R)有实数根b,且z=a+bi,求复数(1-ci)(c>0)的辐角主值的取值范围. ※32.(1999上海文,19)设复数z满足4z+2=3+i,ω=sinθ-icosθ(θ∈R).求z的值和|z-ω|的取值范围. ※33.(1998上海文,18)已知复数z1满足(z1-2)i=1+i,复数z2的虚部为2,且z1·z2是实数,求复数z2的模.

13、 ※34.(1998上海理,18)已知向量所表示的复数z满足(z-2)i=1+i,将绕原点O按顺时针方向旋转得,设所表示的复数为z′,求复数z′+i的辐角主值. ※35.(1997全国文,20)已知复数z=i,w=i,求复数zw+zw3的模及辐角主值. 38.(1996上海理,22)设z是虚数,w=z+是实数,且-1<ω<2. (Ⅰ)求|z|的值及z的实部的取值范围; (Ⅱ)设u=,求证:u为纯虚数; (Ⅲ)求w-u2的最小值. 39.(1995上海,22)已知复数z1、z2满足|z1|=|z2|=1,且z1+z2=i.求z1、z2的值. ※40.(1995全国文,22)设复数z

14、cosθ+isinθ,θ∈(π,2π).求复数z2+z的模和辐角. ※41.(1995全国理,21)在复平面上,一个正方形的四个顶点按照逆时针方向依次为Z1,Z2,Z3,O(其中O是原点),已知Z2对应复数z2=1+i,求Z1和Z3对应的复数. ※42.(1994全国理,21)已知z=1+i, (Ⅰ)设w=z2+3-4,求w的三角形式. (Ⅱ)如果=1-i,求实数a,b的值. 43.(1994上海,22)设w为复数,它的辐角主值为π,且为实数,求复数w. ●答案解析 2.答案:A 解析:由已知z=[(m-4)-2(m+1)i]在复平面对应点如果在第一象限,则而此不等式组无解.

15、即在复平面上对应的点不可能位于第一象限. 3.答案:B 解析:(1+i)(cosθ+isinθ)=(cos+isin)(cosθ+isinθ) =[cos(θ+)+isin(θ+)] ∵θ∈(,π) ∴θ+∈(,) ∴该复数的辐角主值是θ+. 6.答案:D 解法一: 解法二: ∴ ∴应在第四象限,tanθ=,θ=arg. ∴arg是π. 8.答案:B 解析:根据复数乘法的几何意义,所求复数是 . 9.答案:C 解法一:采用观察排除法.复数对应点在第二象限,而选项A、B中复数对应点在第一象限,所以可排除.而选项D不是复数的三角形式,也可排除,所以选C.

16、 解法二:把复数直接化为复数的三角形式,即 12.答案:D 解法一:∵-i=cos+isin ∴-i的三个立方根是cos(k=0,1,2) 当k=0时,; 当k=1时,; 当k=2时,. 13.答案:B 解法一:, 故(2+2i)4=26(cosπ+isinπ)=-26,1-, 故. 于是, 所以选B. 解法二:原式= ∴应选B 14.答案:B 解析:z=-i是z3=1的一个根,记z=ω,ω4=ω,故选B. 17.答案: 解析:设 ∵w1⊙w2=0 ∴由定义x1x2+y1y2=0 ∴OP1⊥OP2 ∴∠P1OP2=. 21.答案:2+i

17、 解析:由已知, 故z=2+i. 22.解法一:设z=a+bi(a,b∈R),则(1+3i)z=a-3b+(3a+b)i. 由题意,得a=3b≠0. ∵|ω|=, ∴|z|=. 将a=3b代入,解得a=±15,b=±15. 故ω=±=±(7-i). 解法二:由题意,设(1+3i)z=ki,k≠0且k∈R, 则ω=. ∵|ω|=5,∴k=±50. 故ω=±(7-i). 23.解:∵z=1+i, ∴az+2b=(a+2b)+(a-2b)i, (a+2z)2=(a+2)2-4+4(a+2)i=(a2+4a)+4(a+2)i, 因为a,b都是实数,所以由az+2b=(a

18、+2z)2得 两式相加,整理得a2+6a+8=0, 解得a1=-2,a2=-4, 对应得b1=-1,b2=2. 所以,所求实数为a=-2,b=-1或a=-4,b=2. (Ⅱ)z7=1,z=cosα+isinα ∴z7=cos7α+isin7α=1,7α=2kπ z+z2+z4=-1-z3-z5-z6 =-1-[cos(2kπ-4α)+isin(2kπ-4α)+cos(2kπ-2α)+isin(2kπ- 2α)+cos(2kπ-α)+isin(2kπ-α)] =-1-(cos4α-isin4α+cos2α-isin2α+cosα-isinα) ∴2(cosα+cos

19、2α+cos4α)=-1, cosα+cos2α+cos4α=- 解法二:z2·z5=1,z2= 同理z3=,z= ∴z+z2+z4=-1--- ∴z+++z++z=-1 ∴cos2α+cosα+cos4α= 解法二:|z|=1可看成z为半径为1,圆心为(0,0)的圆. 而z1可看成在坐标系中的点(2,-2) ∴|z-z1|的最大值可以看成点(2,-2)到圆上的点距离最大.由图12—2可知:|z-z1|max=2+1 26.(Ⅰ)解:∵α是方程x2-x+1=0的根 ∴α1=(1+i)或α2=(1-i) 当α1=(1+i)时,∵α12=i,α12n-1= ∴ 当α2=

20、1-i)时,∵α22=-i ∴ ∴Mα=} 28.解:设z=x+yi(x、y∈R), ∵|z|=5,∴x2+y2=25, 而(3+4i)z=(3+4i)(x+yi)=(3x-4y)+(4x+3y)i, 又∵(3+4i)z在复平面上对应的点在第二、四象限的角平分线上, ∴3x-4y+4x+3y=0,得y=7x ∴x=±,y=± 即z=±(+i);z=±(1+7i). 当z=1+7i时,有|1+7i-m|=5, 即(1-m)2+72=50, 得m=0,m=2. 当z=-(1+7i)时,同理可得m=0,m=-2. 解:∵该直线上的任一点P(x,y),其经变换后得到的

21、点Q(x+y,x-y)仍在该直线上, ∴x-y=k(x+y)+b, 即-(k+1)y=(k-)x+b, 30.解:由0<θ<得tanθ>0. 由z=3cosθ+i·2sinθ,得0<argz<及tan(argz)=tanθ 故tany=tan(θ-argz)= ∵+2tanθ≥2 ∴≤ 当且仅当=2tanθ(0<θ<)时, 即tanθ=时,上式取等号. 所以当θ=arctan时,函数tany取最大值 由y=θ-argz得y∈(). 由于在()内正切函数是递增函数,函数y也取最大值arctan. 评述:本题主要考查复数的基本概念、三角公式和不等式等基础知识,考查综合运用

22、所学数学知识解决问题的能力.明考复数实为三角.语言简练、情景新颖,对提高考生的数学素质要求是今后的命题方向. ∴复数(1-ci)的辐角主值在[0, 范围内,有arg[(1-ci)]=arctan=arctan(-1), ∵0<c≤1,∴0≤-1<1, 有0≤arctan(-1)<, ∴0≤arg[(1-ci)]<. 32.解:设z=a+bi(a,b∈R),则=a-bi,代入4z+2=3+i 得4(a+bi)+2(a-bi)=3+i. ∴.∴z=i. |z-ω|=|i-(sinθ-icosθ)| = ∵-1≤sin(θ-)≤1,∴0≤2-2sin(θ-)≤4. ∴0≤

23、z-ω|≤2. 评述:本题考查了复数、共轭复数的概念,两复数相等的充要条件、复数的模、复数模的取值范围等基础知识以及综合运用知识的能力. 34.解:由(z-2)i=1+i得z=+2=3-i ∴z′=z[cos(-)+isin(-)]=(3-i)(i)=-2i z′+i=-i=2(i)=2(cosπ+isinπ) ∴arg(z1+i)=π 评述:本题考查复数乘法的几何意义和复数辐角主值的概念. 35.解法一:zw+zw3=zw(1+w2)=(i)(i)(1+i) =(1+i)2(i)= 故复数zw+zw3的模为,辐角主值为. 解法二:w=i=cos+isin zw

24、zw3=z(w+w3)=z[(cos+isin)+(cos+isin)3] =z[(cos+isin)+(cos+isin)]=z() = 故复数zw+zw3的模为,辐角主值为π. 评述:本题主要考查复数的有关概念及复数的基本运算能力. 又因为|OP|=||=1,|OQ|=|z2ω3|=|z|2|ω|3=1 ∴|OP|=|OQ|. 由此知△OPQ为等腰直角三角形. 证法二:∵z=cos(-)+isin(-). ∴z3=-i 又ω=. ∴ω4=-1 于是 由此得OP⊥OQ,|OP|=|OQ| 故△OPQ为等腰直角三角形. (2)由z1=1+mi(m>0),z1

25、2=z2得z2=(1-m2)+2mi ∴ω=-(1+m2)+2mi tanθ=- 由m>0,知m+≥2,于是-1≤tanθ≤0 又 -(m2+1)<0,2m>0,得π≤θ<π 因此所求θ的取值范围为[π,π). 38.解:(Ⅰ)设z=a+bi,a、b∈R,b≠0 则w=a+bi+ 因为w是实数,b≠0,所以a2+b2=1, 即|z|=1. 于是w=2a,-1<w=2a<2,-<a<1, 所以z的实部的取值范围是(-,1). (Ⅱ). 因为a∈(-,1),b≠0,所以u为纯虚数. 39.解:由|z1+z2|=1,得(z1+z2)()=1,又|z1|=|z2|=1,故可

26、得z1+z2=-1,所以z1的实部=z2的实部=-.又|z2|=1,故z2的虚部为±, z2=-±i,z2=z1. 于是z1+z1, 所以z1=1,z2=或z1=,z2=1. 所以,或 40.解法一:z2+z=(cosθ+isinθ)2+cosθ+isinθ=cos2θ+isin2θ+cosθ+isinθ =2cosθcos+i·2sincos=2cos(cosθ+isinθ) =-2cos[cos(π+θ)+isin(π+θ)] ∵θ∈(π,2π),∴∈(,π),∴-2cos>0 ∴复数z2+z的模为-2cos,辐角为2kπ+π+θ(k∈Z) 解法二:设Z1、Z3对应的复数分别是z1、z3,根据复数加法和乘法的几何意义,依题意得 ∴z1=z2(1-i)=(1-i)(1-i)=i z3=z2-z1=(1+i)-(i)=i 42.解:(Ⅰ)由z=1+i,有w=(1+i)2+3(1-i)-4=-1-i,所以w的三角形式是 (cos) 43.解:因为w为复数,argw=,所以设w=r(cos+isin), 则, 从而4-r2=0,得r=2. 因此w=2(cos=-+i. - 30 - 用心 爱心 专心

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服