ImageVerifierCode 换一换
格式:DOC , 页数:7 ,大小:135KB ,
资源ID:7775404      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/7775404.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【pc****0】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【pc****0】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(二次函数的图象分析.doc)为本站上传会员【pc****0】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

二次函数的图象分析.doc

1、二次函数的图象分析一、基本概念: 对于二次函数yax2+bx+c(a0)1函数图象开口方向决定a的符号,开口向上,a0,开口向下, a0,交点在负半轴时c04函数图象与x轴交点的横坐标为x1,x2,由根与系数的关系知:, 5函数图象一般来说与x轴有交点,则二、基本类型(一)对称轴不明确型【例1】(2005年非课改区中考试题)已知二次函数yax2+bx+c的图象与x轴交于(x1,0),(x2,0),且0x11, 1x21 3a+b0a+b2 a-1,其中正确的个数有( )(A)1个 (B)2个 (C)3个 (D)4个(二)基本方法方法1:数形结合法1先确定a,b,c的符号,2根与系数的关系3由特

2、殊点列出等式与不等式4灵活运用上述3个步骤中的条件逐步验证各个待定结论【解析】画出草图,如图,由图象可知:a0,c2,0x11,1x22, 1x1x23,0x1x22, ,两边同时乘以a,得,ab0,结论错误,由,得,两边同时乘以a,得022a, a0,故ab2, 结论错误,当x2时,y4a2b20, 2ab1, 结论也不对,故选A.方法2:赋值法0x11, 1x22,不妨设x10.5,x21.5,设二次函数的解析式为ya(x0.5)(x1.5),因抛物线过点(0,2),0.75a2,得,则该二次函数解析式为a,b,c2,2ab+1,3ab=2, a0)的对称轴为x1,交x轴的一个交点为(x1

3、,0),且0x10 b0,其中正确的个数有( )(A)1个 (B)2个(C)3个 (D)4个【解析】画出大致草图如右,由图象可知:a0,b0,c0,则结论正确,对称轴是x1,即,b2a,ba=2aa=a0,则ba,结论错误,当x=1, abc0, b=2a,3ac0,结论正确.正确.故选C.函数与方程、不等式函数与方程、不等式是初中代数的重要内容,在中考中占有相当大的比重,且在问题的设置上灵活多变,对于这些内容的考查大致可分为以下三种:1.函数与方程、不等式的综合型题目解决这类题目应重点关注一次函数、反比例函数和二次函数的图象与性质;要会用函数观点来理解方程与不等式;会利用一次函数图象求二元一

4、次方程组的近似解;会利用二次函数求一元二次方程的近似解;会通过观察图象比较两个函数值的大小.2.函数与方程、不等式的实际应用型题目代数中的应用型问题向来是中考解答题中的重要组成部分,通常以函数与方程的综合题为主,有时还可以与不等式的知识相结合,用来确定自变量的取值范围. 函数与方程的综合题中,二者的联系表现在:(1) 把求函数值,或由函数值求自变量的问题,转化为相应的方程问题;(2) 求函数的解析式,往往要根据题意列出方程或者方程组求解;(3) 以x为自变量的函数y,其图象与x轴(y轴)的交点问题,即为求当y=0(x=0)时的方程的解的问题;(4) 两个函数图象的交点问题,就是由两个函数解析式

5、组成的方程组的解的问题.解决这类问题要注意以下几点:(1)应树立信心,抛开情节的束缚.因为这类题目实际上是套上实际背景的简单的纯数学问题;(2)学会化简问题,面对一道实际应用问题应一边阅读一边思考,把相关的重要量、条件用线画出来;(3)把关键的字、词、句中生活化的语言转化为数学语言.3.函数、方程及不等式与几何的综合题代数与几何的综合题是初中数学中涵盖面广、综合性最强的题型,一般题量较大,梯度明显,代数知识主要涉及方程、函数、不等式等;几何知识主要涉及三角形、四边形、相似形、圆等.解决这类问题时要注意以下几点:(1)宏观上进行总体把握.明确解题结果的终极目标和每一步骤的分项目标;把握概念的准确

6、性和运算的准确性;注意条件的隐含性;(2)运用数形结合思想,设法从代数与几何的结合上找出思路,但要注意特殊性;(3)富于联想,联系相关知识、相似问题与类似方法.四边形中的二次函数问题在四边形中确定二次函数解析式的问题是中考中常见的热点问题之一.这类问题巧妙地将代数、几何知识融为一体,一般通过“形”与“数”之间的对应、转化来解决.【例1】 (2005广州) 如图(1),某学校校园内有一块形状为直角梯形的空地ABCD,其中ABDC,B90,AB100m,BC80m,CD40m,现计划在上面建一个底面为矩形,面积为S的综合楼PMBN,其中点P在线段AD上,且PM的长至少为36m.(1)求边AD的长;

7、(2)设PAx(m),求S关于x的函数关系式,并指出自变量x的取值范围.【分析】 解决梯形问题时,常需添加适当的辅助线,把梯形转化成平行四边形和三角形.这道题我们也从这方面考虑.解:(1)如图(2),过点D作DEAB于点E,则DEBC,且DEBC,CDBE,DEPM.在RtADE中,DE80m,AEABBE=100-40=60(m),(2) DEPM, APMADE. 自变量x的取值范围为45x100.【例2】 如图,在矩形ABCD中,BD20,ADAB,设ABD,已知sin是方程25x235x120的一个实根,点E、F分别是BC、DC上的点,ECCF8,设BEx,AEF的面积等于y.(1)求

8、出y与x之间的函数关系式;(2)当点E、F两点在什么位置时,y有最小值?并求出这个最小值.【分析】 (1)首先由已知条件不难求出AD和AB的长.由于BEx,CFEC8,则可用x表示CF、DF、EC.从而用x表示ABE、ECF、ADF的面积.最后利用即可求出y与x之间的函数关系;(2)只需将(1)中的函数关系式配方即可求出y的最小值.解:(1) sin是方程25x235x120的一个实根, 解方程得 又 ADAB, 有AD16,AB12.BEx,则有EC16x,FC8ECx8,DF12FC20x,则即x210x96(8x16).(2) 当x10时,即当BE10,CF2时,y有最小值为46.【小结

9、】 一般来说,解决此类问题大致分为三步:(1)分析题意,理清题目中两个几何变量x、y的变化情况;(2)按照有关的几何性质及图形关系,找出一个基本关系式,将含x、y的量代入这个关系式,并将它整理成函数关系式;(3)确定自变量x的取值范围,有时需要画出相应的图形.以上三步,分析是基础;寻找并确定基本关系式是关键;确定自变量x的取值范围是完整解决问题不可忽视的步骤. 用函数、方程与不等式解决实际问题一、与函数图象结合的实际问题 【例1】 一辆电瓶车在实验过程中,前10秒行驶的路程S(米)与时间t(秒)满足关系式Sat2,第10秒末开始匀速行驶,第24秒末开始刹车,第28秒末停在离终点20米处.下图是

10、电瓶车行使过程中每2秒记录一次的图象.(1)求电瓶车从出发到刹车时的路程S(米)与时间t(秒)的函数关系式;(2)如果第24秒末不刹车继续匀速行驶,那么出发多少秒后通过终点?(3)如果10秒后仍按Sat2的运动方式行使,那么出发多少秒后通过终点?(参考数据:,计算结果保留两个有效数字)【分析】 本题考查同学们识别图象的能力,题目具有很强的实际意义.解题时要注意函数解析式在不同的时间段内是不同的,所以需分情况讨论.解:(1)当0t10时,点(10,10)在Sat2的图象上,把此点的坐标代入得 10a102, 解得 St2.当10t24时,由图象可设一次函数解析式为Sktb(k0). 该图象过(1

11、0,10)和(24,38)两点,(2) 当S402060时,602t10, t35,即如果第24秒末不刹车继续行使,第35秒可通过终点.(3) 当S60时,由St2,可得60t2,解得,舍去负值, t102.45=24.5,即出发约 24.5秒通过终点.【小结】 解决分段函数的关键是一定要理解好函数图象上点的横、纵坐标所表示的实际含义,根据每一段函数图象的具体特点结合相应解析式解题. 二、与方案操作结合的实际问题【例2】 某送奶公司计划在三栋楼之间建一个取奶站,三栋楼在同一条直线上,顺次为A楼、B楼与C楼,其中A楼与B楼之间的距离为40米,B楼与C楼之间的距离为60米.已知A楼每天有20人取奶

12、,B楼每天有70人取奶,C楼每天有60人取奶,送奶公司提出两种建站方案.方案一:让每天所有取奶的人到奶站的距离总和最小;方案二:让每天A楼与C楼所有取奶的人到奶站的距离之和等于B楼所有取奶的人到奶站的距离之和.(1)若按照方案一建站,取奶站应建在什么位置?(2)若按照方案二建站,取奶站应建在什么位置?(3)在(2)的情况下,若A楼每天取奶的人数增加(增加的人数不超过22人),那么取奶站将离B楼是越来越近,还是越来越远?请说明理由.【分析】 本题给了两种方案,要求同学们按照方案进行实施;在此基础上,若某些条件改变,方案会变化的原因是我们所要考虑的,只有把原因弄清楚了,其结论自然就清楚了.解:(1

13、)设取奶站建在距A楼x米处,所有取奶的人到奶站的距离总和为y米. 当0x40时,y20x70(40x)60(100x)110x8800.当x40时,y的最小值为8800-44004400. 当40x100时,y20x70(x40)60(100x) 30x3200.此时,y的值大于4400.因此按照方案一建奶站,取奶站应建在B楼处.(2)设取奶站建在距A楼x米处.当0x40时,20x60(100x)70(40x).解得 (舍去).当40x100时,20x60(100x)70(x40).解得 x80.因此按方案二建奶站,取奶站应建在距A楼80米处.(3) 设A楼取奶人数增加a人. 当0x40时,(

14、20a)x60(100x)70(40x).解得 x0(舍去).当40x100时,(20a)x60(100x)70(x40).解得 当a增大时,x增大. 当A楼取奶的人数增加时,按照方案二建奶站,取奶站仍建在B、C两楼之间,且随着人数的增加,离B楼越来越远.【小结】 本题中取奶站距A楼x米,B楼与其位置不确定,应分类讨论,因此应按0x40与40x100两种情况讨论,分类后,所得函数与方程均为两种不同形式. 三、与几何图形结合的实际问题【例3】 (2006包头)某农场计划建一个面积为150平方米的长方形养鸡场,为了节约费用,鸡场一边靠着原有的一堵旧墙(墙长25米),另外的三边用木栏围成(如图所示)

15、.已知整修旧墙的费用是每米10元,新建木栏的费用是每米30元,设利用旧墙AD的长度为x米,整修需的总费用为y元.(1)试求y与x之间的函数关系式,并写出自变量x的取值范围;(2)若整修旧墙和新建木栏的总费用为1200元,则应利用旧墙多少米?(3)为了确保完成整修旧墙和新建木栏的任务,总费用能否少于1200元?请说明理由.【分析】 解决本题可先用含x的代数式表示AB长,再根据题意建立y与x之间的函数关系,运用解方程的知识即可求解.解:(1)根据题意,得 (2)根据题意,得 40x1200,整理,得 x230x2250,解得 x1x215,应利用旧墙15米.(3)假设总费用为k(k0)元时,能确保完成修建任务,根据题意,得 40xk,即 40x2kx90000,该方程有实数解时,b24ack24409000k214400000,解得 k1200, 总费用不能少于1200元.另解: y1200. 总费用不能少于1200元.【小结】 解本题的关键是正确理解围成的矩形的四边形的材料不同,根据题中条件正确组合,列出函数关系式.

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服