ImageVerifierCode 换一换
格式:PPT , 页数:59 ,大小:912KB ,
资源ID:774204      下载积分:11 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/774204.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(09-不完全信息博弈和贝叶斯均衡.ppt)为本站上传会员【可****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

09-不完全信息博弈和贝叶斯均衡.ppt

1、第三章:不完全信息静态博弈主要内容:一、不完全信息博弈和贝叶斯纳什均衡二、贝叶斯均衡的应用三、贝叶斯博弈与混合战略均衡四、机制设计理论与显示原理第一节 不完全信息博弈和贝叶斯均衡 一、贝叶斯博弈 二、海萨尼转换 三、贝叶斯博弈的战略式描述 四、贝叶斯纳什均衡一、贝叶斯博弈一、贝叶斯博弈完全信息(complete information):每个参与人对其他参与人的支付函数有准确的了解支付函数有准确的了解;否则,为不完全信息(incomplete information)。完美信息(perfect information):在博弈过程的任何时点每个参与人都能观察并记忆之前各局中观察并记忆之前各局中

2、人所选择的行动人所选择的行动,否则为不完美信息(imperfect information)。前面两章我们讨论了完全信息博弈问题,但在现实生活中我们遇到更多的可能是不完全信息博弈问题。例如:在企业的新产品开发过程中,企业对市场的需求可能并不清楚;在连锁店博弈中,潜在的进入者可能并不知道连锁店在市场上的盈利情况,等等。像这种博弈开始时就存在事前不确定性的开始时就存在事前不确定性的博弈问题博弈问题是不完全信息博弈问题。40,50-10,030,80-10,1000,300 0,3000,400 0,400 高成本情况 低成本情况 默许 斗争 默许 斗争进入不进入进入者 在位者市场进入博弈:不完全信

3、息在位者的成本有两种类型,而进入者并不知道在位者的成本类型。显然,在这种情形下,进入者有关在位者的成本信息是不完全的。当在位者具有不同的成本时,所表现出来的博弈情形是不同的,对应的均衡也是不一样的。高成本情形:(进入,默许)(不进入,斗争)低成本情形:(不进入,斗争)斗鸡博弈两个所谓的勇士举着长枪,准备从独木桥的两端冲上桥中央进行决斗。每位勇士都有两种选择:冲上去(用U表示),或退下来(用D表示)。若两人都冲上去,则两败俱伤;若一方上去而另一方退下来,冲上去者取得胜利(至少心理上是这样的),退下来的丢了面子;若两人都退下来,两人都丢面子。存在两个纯战略Nash均衡(U,D)和(D,U),也就是

4、一个人冲上去,另一个就必须退下来。当一个理性的参与人预测到对方将会冲上去时,明智的选择就是退下来;而当预测到对方将会选择退却时,就应该大胆地冲上去。-4,-42,-2-2,20,0UD21UD现在考虑这样的情形:假设参与人可能有这样的两种性格特征(类型)“强硬”(用s表示)或“软弱”(用w表示)。所谓“强硬”的参与人是指那些喜欢争强好胜、不达目的誓不罢休的决斗者;而“软弱”的参与人是指那些胆小怕事、遇事希望息事宁人的决斗者。可以想象,当具有不同性格特征的决斗者相遇时,表现出来的博弈情形将会不同。斗鸡博弈:不完全信息当参与人都为强硬者时博弈存在两个纯战略Nash均衡(U,D)和(D,U)。当参与

5、人1为强硬者参与人2为软弱者时博弈存在唯一的Nash均衡(U,D)。当参与人1为软弱者参与人2为强硬者时博弈存在唯一的Nash均衡(D,U)。当参与人都为软弱者时博弈存在唯一的Nash均衡(D,D)。(1)参与人都为强硬者(2)参与人1为强硬者参与人2为软弱者(3)参与人1为软弱者参与人2为强硬者(4)参与人都为软弱者 强硬 软弱 U D U D1 2 1,1 0,0 1,0 0,2 0,0-4,-4 0,-2-4,-4 0,1-2,0 0,0 -2,2 2,0-4,-4 2,-2-4,-4 U D U D强硬 软弱斗鸡博弈:不完全信息在“斗鸡博弈”中,虽然在博弈开始之前每位决斗者都知道自己的

6、性格特征,但对对手的性格特征往往不甚了解。在这种情况下即使所有的决斗者都看到了上面的四个战略式博弈,但对决斗者来讲,仍存在着所谓的事前不确定性,即博弈开始之前就不知道的信息。具体而言,这意味着当博弈真正开始的时候,对到底体现为哪一种博弈形势并不清楚。对于“强硬”的参与人1来讲,虽然他看到了上面的战略式博弈,但他不知道对手是“强硬”的还是“软弱”的,所以博弈开始之前他无法确定博弈是根据(1)还是(2)进行。这意味着“强硬”的参与人1面临着事前无法确定的信息。同样,“软弱”的参与人1也会面临类似的问题。此时,“斗鸡博弈”就是一个不完全信息博弈问题。从这一例子来看,博弈的参与人均存在两种不同的类型,

7、即强硬和软弱;由于参与人1不知道对手究竟是“强硬”的还是“软弱”的,因此,此时参与人1就好像在与两个决斗者进行决斗,一个是“强硬”的,另一个是“软弱”的;当一个参与人并不知道在与谁博弈时,博弈的规则是无法定义的,如何处理不完全信息导致的这一问题?为了解决该问题,海萨尼提出了Harsanyi转换。海萨尼指出,引入虚拟参与人自然,由自然先决定参与人的不同类型,将不完全信息博弈转换为不完美信息博弈。二、海萨尼(二、海萨尼(Harsanyi)转换)转换为了解释Harsanyi转换的具体含义,我们对“斗鸡博弈”进行简化。假设参与人1是“强硬”的决斗者,参与人2可能是“强硬”的也可能是“软弱”的,参与人1

8、不知道参与人2的类型,但参与人2知道自己的类型,而且这一假设为所有的参与人所知道。Harsanyi转换对于简化的“斗鸡博弈”,Harsanyi转换是这样处理的:在原博弈中引入一个“虚拟”的参与人“自然”(nature,用N表示),构造一个参与人为两个决斗者和“自然”的三人博弈。Harsanyi转换“自然”首先行动决定参与人2的性格特征(即选择参与人2是“强硬”的还是“软弱”的),“自然”的选择参与人1不知道,但参与人2知道。参与人2的特征在“自然”选择后,参与人1和2再进行“斗鸡博弈”。在新构造的三人博弈中,“自然”的支付不必考虑。参与人1和2的支付由“斗鸡博弈”决定。如果“自然”选择参与人2

9、的性格特征是“强硬”的,则意味着参与人1与“强硬”的参与人2进行决斗,博弈进入决策结x1,其支付由(1)决定;如果“自然”选择参与人2的性格特征是“软弱”的,则意味着参与人1与“软弱”的参与人2进行决斗,博弈进入决策结x2,其支付由(2)决定。海萨尼通过引入“虚拟”参与人,将博弈的起始点由x1或x2提前至x0,从而将原博弈中参与人的事前不确定性转变为博弈开始后的不确定性。这种通过引入“虚拟”参与人来处理不完全信息博弈问题的方法称为 Harsanyi转换。在Harsanyi转换中规定:参与人关于“自然”选择的推断为共同知识。也就是说,两个决斗者不仅同时一起看到了“自然”随机选择参与人2的性格特征

10、而且同时一起看到了“自然”以一定的概率分布随机选择参与人2的性格特征。在应用在应用HarsanyiHarsanyi转换时,需要注意以下问题:转换时,需要注意以下问题:1)“自然”的选择。在一般的不完全信息博弈问题中,Harsanyi转换规定“自然”选择的是参与人的类型(type)。除了根据参与人的支付来划分参与人的类型以外,还可以根据参与人的行动空间,甚至根据参与人掌握信息的多少(或程度)来划分参与人的类型。用ti表示参与人i的一个特定的类型,Ti表示参与人i所有类型的集合(亦称类型空间,type space),即 ,t=(t1,tn)表示所有参与人的类型组合,t-i=(t1,ti-1,tn

11、)表示除参与人i之外其他参与人的类型组合。所以,t=(ti,t-i)。用 表示参与人i在知道自己类型为ti的情况下,关于其他参与人类型的推断(即条件概率),则2)参与人关于“自然”选择的推断:用p(t1,tn)表示定义在参与人类型组合上的一个联合分布概率函数。假设pss=0.2,psw=0.3,pws=0.25,pww=0.25。其中,pss:决斗者1和决斗者2同时强硬的概率;psw:决斗者1强硬、决斗者2软弱的概率;pws:决斗者1软弱、决斗者2强硬的概率;pww:决斗者1软弱、决斗者2软弱的概率;虽然决斗者1不知道决斗者2 的类型,但由于决斗者1知道自己的类型,因此他可以根据贝叶斯公式推知

12、决斗者2的类型分布。例如根据贝叶斯规则,“强硬”的决斗者1可以推知:决斗者2是“强硬”的概率为 决斗者2是“软弱”的概率为“软弱”的决斗者1可以推知:决斗者2是“强硬”的概率为 决斗者2是“软弱”的概率为 不完全信息博弈:完全信息博弈在不完全信息上的拓展,我们又将其称为贝叶斯博弈;贝叶斯博弈:静态贝叶斯博弈和动态贝叶斯博弈;三、贝叶斯博弈的战略式描述贝叶斯博弈的定义贝叶斯博弈包含以下五个要素:(1)参与人集合 ;(2)参与人的类型集合T1,T2;(3)参与人关于其他参与人类型的推断 ,;(4)参与人类型相依的行动集A(t1),A(tn);(5)参与人类型相依的支付函数 ,。贝叶斯博弈中的战略在

13、贝叶斯博弈 中,参与人i的一个战略是从参与人的类型集Ti到其行动集的一个函数si(ti);它包含了当自然赋予i的类型为ti时,i将从可行的行动集Ai(ti)中选择的行动。用 表示给定其他参与人的战略 ,类型为ti的参与人i选择行动ai时的期望效用,则 其中,对 ,为给定t-i时由s-i所确定的其他参与人的行动组合贝叶斯博弈的时间顺序如下:(1)“自然”选择参与人的类型组合t=(t1,tn),其中,参与人i观测到“自然”关于自己类型ti的选择;虽然参与人i观测不到“自然”关于其他参与人类型t-i的选择,但参与人i具有关于其他参与人类型的推断 ;(2)参与人同时选择行动,每个参与人i从行动集Ai(

14、ti)中选择行动ai(ti);(3)参与人i得到 。“斗鸡博弈”的贝叶斯模型参与人为决斗者1和2;用s表示决斗者是“强硬”的,w表示决斗者是“软弱”的,所以T1=T2=s,w。用pxy表示“自然”选择类型组合(x,y)的概率,并假设pxy为共同知识,则决斗者1关于其对手类型的推断为p1(y|x)。决斗者1关于类型相依的行动空间A1(x)=U,D,决斗者2关于类型相依的行动空间A2(y)=U,D。每位决斗者i的支付由前面的图决定。在贝叶斯博弈中,对于一个理性的参与人i,当他只知道自己的类型ti而不知道其他参与人的类型时,给定其他参与人的战略s-i,他将选择使自己期望效用(支付)最大化的行动 ,其

15、中四、贝叶斯纳什均衡纯战略贝叶斯Nash均衡 贝叶斯博弈 的纯战略贝叶斯Nash均衡是一个类型相依的行动组合 ,其中每个参与人在给定自己的类型ti和其他参与人的类型相依行动 的情况下最大化自己的期望效用。也就是,行动组合 是一个纯战略贝叶斯Nash均衡,如果对 ,贝叶斯博弈纳什均衡的存在性定理 一个有限的贝叶斯博弈一定存在贝叶斯Nash均衡。类型1类型2左 右左 右3,12,03,02,10,14,00,04,1上 下 甲乙静态贝叶斯博弈均衡举例:表中甲、乙同时行动,甲只有一种类型,但乙有两种类型:2=1,2;甲不了解对方是哪一种类型,但他相信对方为1,2的概率各为1/2。求解均衡。乙:如果为

16、1,有占优战略为“左”;如果为2,有占优战略为“右”甲:由于甲相信对方为两种类型的可能性各为1/2,故甲考虑选“上”和“下”分别给他带来的期望收益;结果选“上”,期望支付为5/2,选“下”,期望支付为2,因而甲的最佳选择是“上”。纳什均衡为s1*=上;s2*(1)=左,s2*(2)=右。贝叶斯Nash均衡的求解:先以简化的“斗鸡博弈”为例。强硬 软弱 U D U D1 2 0,1-2,0 0,0 -2,2 2,0-4,-4 2,-2-4,-4 U D 强硬用p表示决斗者1关于决斗者2的类型的推断,即决斗者1认为决斗者2为强硬的概率为p。(x,(y,z):x表示当决斗者2选择该方格所对应的战略时

17、决斗者1选择该方格所对应的战略规定的行动所得到的期望支付;y和z分别表示当决斗者1选择该方格所对应的战略时,“强硬”决斗者2和“软弱”决斗者2选择该方格所对应的战略规定的行动所得到的期望支付。给定决斗者1选择战略U,“软弱”决斗者2选择行动D的期望支付为0,选择行动U的期望支付为-4,行动D优于行动U;给定决斗者1选择战略D,“软弱”决斗者2选择行动D的期望支付为1,选择行动U的期望支付为0,所以,行动D优于行动U。这意味着战略U为软弱决斗者2的劣战略。-4,-42,-2-2,20,0 U21UD-4,-42,0-2,00,1 D D U-4,-42,-2-2,20,0 U21UD 2,0

18、D D0,1下面根据p的大小,求解博弈的纯战略贝叶斯 Nash均衡。1)假设 ,无论决斗者2选择战略(U,D)还是(D,D),决斗者1的最优行动都是U。给定决斗者1的选择U,“强硬”决斗者2的最优行动为D。所以,博弈存在惟一的纯战略贝叶斯Nash均衡决斗者1选择行动U,“强硬”决斗者2选择行动D,“软弱”决斗者2选择行动D。情形1:给定决斗者1认为决斗者2为强硬的概率为p2)假设 ,博弈存在如下两个纯战略贝叶斯Nash均衡:(1)决斗者1选择行动U,“强硬”决斗者2选择行动D,“软弱”决斗者2选择行动D;(2)决斗者1选择行动D,“强硬”决斗者2选择行动U,“软弱”决斗者2选择行动D。求解另一

19、种情形下“斗鸡博弈”的 贝叶斯Nash均衡 强硬 软弱 U D U D 1,1 0,0 1,0 0,2 0,0-4,-4 0,-2-4,-4 0,1-2,0 0,0 -2,2 2,0-4,-4 2,-2-4,-4 U D U D强硬 软弱求解另一种情形下“斗鸡博弈”的 贝叶斯Nash均衡假设“强硬”决斗者1关于决斗者2的类型推断 ;“软弱”决斗者1关于决斗者2的类型推断 ;“强硬”决斗者2关于决斗者1的类型推断 ;“软弱”决斗者2关于决斗者1的类型推断 ;强硬 软弱 U D U D 1,1 0,0 1,0 0,2 0,0-4,-4 0,-2-4,-4 0,1-2,0 0,0 -2,2 2,0-

20、4,-4 2,-2-4,-4 U D U D强硬 软弱 强硬 软弱 U D U D 1,1 0,0 1,0 0,2 0,1-2,0 0,0 -2,2 2,0-4,-4 2,-2-4,-4 U D D 强硬 软弱 强硬 软弱 U D U D 1,1 0,0 1,0 0,2 0,1-2,0 0,0 -2,2 2,0-4,-4 2,-2-4,-4 U D D 强硬 软弱 强硬 软弱 U D D 1,1 1,0 0,2 0,1 0,0 -2,2 2,0 2,-2-4,-4 U D D 强硬 软弱 强硬 软弱 U D D 1,1 1,0 0,2 0,1 0,0 -2,2 2,0 2,-2-4,-4 U

21、D D 强硬 软弱 强硬 软弱 U D D 1,1 1,0 0,2 2,0 2,-2-4,-4 U D 强硬 软弱U是强硬的是强硬的决斗者决斗者1的的占优策略占优策略 强硬 软弱 U D D 1,1 1,0 0,2 0,1 0,0 -2,2 2,0 2,-2-4,-4 U D D 强硬 软弱对于强硬的决斗者1而言,有因此,因此,U是强硬是强硬的决斗者的决斗者1的占的占优策略。优策略。强硬 软弱 U D D 1,1 1,0 0,2 2,0 2,-2-4,-4 U D 强硬 软弱因此,强硬的决斗者因此,强硬的决斗者2选择选择U和和D无差别。无差别。对于强硬的决斗者2而言,有所以,该博弈存在如下两个纯战略Nash均衡:“强硬”的决斗者1选择行动U,“软弱”的决斗者1选择行动D;“强硬”的决斗者2选择行动U,“软弱”的决斗者2选择行动D。“强硬”的决斗者1选择行动U,“软弱”的决斗者1选择行动D;“强硬”的决斗者2和“软弱”的决斗者2选择行动D。

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服