ImageVerifierCode 换一换
格式:DOC , 页数:18 ,大小:420KB ,
资源ID:7737682      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/7737682.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【仙人****88】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【仙人****88】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(2014年中考数学试题分类汇编35-弧长与扇形面积.doc)为本站上传会员【仙人****88】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

2014年中考数学试题分类汇编35-弧长与扇形面积.doc

1、弧长与扇形面积一、选择题1. ( 2014珠海,第4题3分)已知圆柱体的底面半径为3cm,髙为4cm,则圆柱体的侧面积为()x k b 1 . c o m新$课$标$第$一$网A24cm2B36cm2C12cm2D24cm2考点:圆柱的计算分析:圆柱的侧面积=底面周长高,把相应数值代入即可求解解答:解:圆柱的侧面积=234=24故选A点评:本题考查了圆柱的计算,解题的关键是弄清圆柱的侧面积的计算方法2. ( 2014广西贺州,第11题3分)如图,以AB为直径的O与弦CD相交于点E,且AC=2,AE=,CE=1则弧BD的长是()来源:学.科.网Z.X.X.KABCD考点:垂径定理;勾股定理;勾股

2、定理的逆定理;弧长的计算分析:连接OC,先根据勾股定理判断出ACE的形状,再由垂径定理得出CE=DE,故=,由锐角三角函数的定义求出A的度数,故可得出BOC的度数,求出OC的长,再根据弧长公式即可得出结论解答:解:连接OC,ACE中,AC=2,AE=,CE=1,AE2+CE2=AC2,ACE是直角三角形,即AECD,sinA=,A=30,COE=60,=sinCOE,即=,解得OC=,AECD,=,=故选B点评:本题考查的是垂径定理,涉及到直角三角形的性质、弧长公式等知识,难度适中3(2014年四川资阳,第9题3分)如图,扇形AOB中,半径OA=2,AOB=120,C是的中点,连接AC、BC,

3、则图中阴影部分面积是()A2B2CD考点:扇形面积的计算分析:连接OC,分别求出AOC、BOC、扇形AOC,扇形BOC的面积,即可求出答案解答:解:连接OC,AOB=120,C为弧AB中点,AOC=BOC=60,OA=OC=OB=2,AOC、BOC是等边三角形,AC=BC=OA=2,AOC的边AC上的高是=,BOC边BC上的高为,阴影部分的面积是2+2=2,故选A点评:本题考查了扇形的面积,三角形的面积,等边三角形的性质和判定,圆周角定理的应用,解此题的关键是能求出各个部分的面积,题目比较好,难度适中x k b 14(2014年云南省,第7题3分)已知扇形的圆心角为45,半径长为12,则该扇形

4、的弧长为()A、 B2C3D12考点:弧长的计算分析:根据弧长公式l=,代入相应数值进行计算即可解答:解:根据弧长公式:l=3,故选:C点评:此题主要考查了弧长计算,关键是掌握弧长公式l=5(2014舟山,第8题3分)一个圆锥的侧面展开图是半径为6的半圆,则这个圆锥的底面半径为()A1.5X kB1.cOMB2C2.5D3考点:圆锥的计算分析:半径为6的半圆的弧长是6,圆锥的底面周长等于侧面展开图的扇形弧长,因而圆锥的底面周长是6,然后利用弧长公式计算解答:解:设圆锥的底面半径是r,则得到2r=6,解得:r=3,这个圆锥的底面半径是3故选D点评:本题综合考查有关扇形和圆锥的相关计算解题思路:解

5、决此类问题时要紧紧抓住两者之间的两个对应关系:(1)圆锥的母线长等于侧面展开图的扇形半径;(2)圆锥的底面周长等于侧面展开图的扇形弧长正确对这两个关系的记忆是解题的关键6.(2014襄阳,第11题3分)用一个圆心角为120,半径为3的扇形作一个圆锥的侧面,则这个圆锥的底面半径为()AB1CD2考点:圆锥的计算分析:易得扇形的弧长,除以2即为圆锥的底面半径解答:解:扇形的弧长=2,故圆锥的底面半径为22=1故选B点评:考查了扇形的弧长公式;圆的周长公式;用到的知识点为:圆锥的弧长等于底面周长7(2014四川自贡,第8题4分)一个扇形的半径为8cm,弧长为cm,则扇形的圆心角为()A60xkb1B

6、120C150D180考点:弧长的计算分析:首先设扇形圆心角为x,根据弧长公式可得:=,再解方程即可解答:解:设扇形圆心角为x,根据弧长公式可得:=,解得:n=120,故选:B点评:此题主要考查了弧长计算,关键是掌握弧长计算公式:l=8(2014台湾,第16题3分)如图,、均为以O点为圆心所画出的四个相异弧,其度数均为60,且G在OA上,C、E在AG上,若ACEG,OG1,AG2,则与两弧长的和为何?()ABCDxk|b|1分析:设ACEGa,用a表示出CE22a,CO3a,EO1a,利用扇形弧长公式计算即可解:设ACEGa,CE22a,CO3a,EO1a,2(3a)2(1a) (3a1a)

7、故选B点评:本题考查了弧长的计算,熟悉弧长的计算公式是解题的关键9. (2014浙江金华,第10题4分)一张圆心角为45的扇形纸板和圆形纸板按如图方式剪得一个正方形,边长都为1,则扇形纸板和圆形纸板的面积比是【 】A B C D【答案】A.【解析】故选A.考点:1. 等腰直角三角形的判定和性质;2. 勾股定理;3. 扇形面积和圆面积的计算.10(2014浙江宁波,第5题4分)圆锥的母线长为4,底面半径为2,则此圆锥的侧面积是( )A6B8C12D16考点:圆锥的计算专题:计算题分析:根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式求解解

8、答:解:此圆锥的侧面积=422=8故选B点评:本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长11.(2014济宁,第5题3分)如果圆锥的母线长为5cm,底面半径为2cm,那么这个圆锥的侧面积为()A10cm2B10cm2C20cm2D20cm2考点:圆锥的计算分析:圆锥的侧面积=底面周长母线长2解答:解:圆锥的侧面积=2252=10故选B点评:本题考查了圆锥的计算,解题的关键是知道圆锥的侧面积的计算方法12.(2014年山东泰安,第19题3分)如图,半径为2cm,圆心角为90的扇形OAB中,分别以OA、OB为直径作半圆,则图中阴影部

9、分的面积为()A(1)cm2B(+1)cm2C 1cm2Dcm2分析:假设出扇形半径,再表示出半圆面积,以及扇形面积,进而即可表示出两部分P,Q面积相等连接AB,OD,根据两半圆的直径相等可知AOD=BOD=45,故可得出绿色部分的面积=SAOD,利用阴影部分Q的面积为:S扇形AOBS半圆S绿色,故可得出结论解:扇形OAB的圆心角为90,假设扇形半径为2,扇形面积为:=(cm2),半圆面积为:12=(cm2),SQ+SM =SM+SP=(cm2),SQ=SP,连接AB,OD,两半圆的直径相等,AOD=BOD=45,S绿色=SAOD=21=1(cm2),w w w .x k b 1.c o m阴

10、影部分Q的面积为:S扇形AOBS半圆S绿色=1=1(cm2)故选:A点评:此题主要考查了扇形面积求法,根据题意作出辅助线,构造出等腰直角三角形是解答此题的关键二.填空题1. ( 2014福建泉州,第17题4分)如图,有一直径是米的圆形铁皮,现从中剪出一个圆周角是90的最大扇形ABC,则:(1)AB的长为1米;(2)用该扇形铁皮围成一个圆锥,所得圆锥的底面圆的半径为米考点:圆锥的计算;圆周角定理专题:计算题分析:(1)根据圆周角定理由BAC=90得BC为O的直径,即BC=,根据等腰直角三角形的性质得AB=1;(2)由于圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,则2r=,然后解方

11、程即可解答:解:(1)BAC=90,BC为O的直径,即BC=,AB=BC=1;(2)设所得圆锥的底面圆的半径为r,根据题意得2r=,解得r=故答案为1,点评:本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长也考查了圆周角定理2(2014浙江宁波,第18题4分)如图,半径为6cm的O中,C、D为直径AB的三等分点,点E、F分别在AB两侧的半圆上,BCE=BDF=60,连接AE、BF,则图中两个阴影部分的面积为 6 cm2考点:垂径定理;全等三角形的判定与性质;含30度角的直角三角形;勾股定理分析:作三角形DBF的轴对称图形,得到三角形A

12、GE,三角形AGE的面积就是阴影部分的面积x k b 1 . c o m解答:解:如图作DBF的轴对称图形HAG,作AMCG,ONCE,DBF的轴对称图形HAG,ACGBDF,ACG=BDF=60,ECB=60,G、C、E三点共线,AMCG,ONCE,AMON,=,在RTONC中,OCN=60,ON=sinOCNOC=OC,OC=OA=2,ON=,AM=2,ONGE,NE=GN=GE,连接OE,在RTONE中,NE=,GE=2NE=2,SAGE=GEAM=22=6,图中两个阴影部分的面积为6,故答案为6点评:本题考查了平行线的性质,垂径定理,勾股定理的应用3.(2014呼和浩特,第11题3分)

13、一个底面直径是80cm,母线长为90cm的圆锥的侧面展开图的圆心角的度数为160考点:圆锥的计算专题:计算题分析:根据圆锥的底面直径求得圆锥的侧面展开扇形的弧长,再利用告诉的母线长求得圆锥的侧面展开扇形的面积,再利用扇形的另一种面积的计算方法求得圆锥的侧面展开图的圆心角即可解答:解:圆锥的底面直径是80cm,圆锥的侧面展开扇形的弧长为:d=80,母线长90cm,圆锥的侧面展开扇形的面积为:lr=8090=3600,=3600,解得:n=160故答案为:160点评:本题考查了圆锥的有关计算,解决此类题目的关键是明确圆锥的侧面展开扇形与圆锥的关系4.(2014德州,第15题4分)如图,正三角形AB

14、C的边长为2,D、E、F分别为BC、CA、AB的中点,以A、B、C三点为圆心,半径为1作圆,则圆中阴影部分的面积是考点:扇形面积的计算;等边三角形的性质;相切两圆的性质分析:观察发现,阴影部分的面积等于正三角形ABC的面积减去三个圆心角是60,半径是2的扇形的面积解答:解:连接ADABC是正三角形,BD=CD=2,BAC=B=C=60,ADBCAD=阴影部分的面积=23=故答案为:点评:此题主要考查了扇形面积的计算,能够正确计算正三角形的面积和扇形的面积正三角形的面积等于边长的平方的倍,扇形的面积=三.解答题1. ( 2014广东,第24题9分)如图,O是ABC的外接圆,AC是直径,过点O作O

15、DAB于点D,延长DO交O于点P,过点P作PEAC于点E,作射线DE交BC的延长线于F点,连接PF(1)若POC=60,AC=12,求劣弧PC的长;(结果保留)(2)求证:OD=OE;(3)求证:PF是O的切线考点:切线的判定;弧长的计算分析:(1)根据弧长计算公式l=进行计算即可;(2)证明POEADO可得DO=EO;(3)连接AP,PC,证出PC为EF的中垂线,再利用CEPCAP找出角的关系求解解答:(1)解:AC=12,CO=6,=2;(2)证明:PEAC,ODAB,PEA=90,ADO=90在ADO和PEO中,POEAOD(AAS),OD=EO;(3)证明:如图,连接AP,PC,OA=

16、OP,OAP=OPA,由(1)得OD=EO,ODE=OED,又AOP=EOD,OPA=ODE,APDF,AC是直径,APC=90,PQE=90PCEF,又DPBF,ODE=EFC,OED=CEF,CEF=EFC,CE=CF,PC为EF的中垂线,EPQ=QPF,CEPCAPEPQ=EAP,QPF=EAP,QPF=OPA,OPA+OPC=90,QPF+OPC=90,OPPF,PF是O的切线点评:本题主要考查了切线的判定,解题的关键是适当的作出辅助线,准确的找出角的关系2.(2014襄阳,第23题7分)如图,在正方形ABCD中,AD=2,E是AB的中点,将BEC绕点B逆时针旋转90后,点E落在CB的

17、延长线上点F处,点C落在点A处再将线段AF绕点F顺时针旋转90得线段FG,连接EF,CG(1)求证:EFCG;(2)求点C,点A在旋转过程中形成的,与线段CG所围成的阴影部分的面积考点:正方形的性质;全等三角形的判定与性质;勾股定理;扇形面积的计算分析:(1)根据正方形的性质可得AB=BC=AD=2,ABC=90,再根据旋转变化只改变图形的位置不改变图形的形状可得ABF和CBE全等,根据全等三角形对应角相等可得FAB=ECB,ABF=CBE=90,全等三角形对应边相等可得AF=EC,然后求出AFB+FAB=90,再求出CFG=FAB=ECB,根据内错角相等,两直线平行可得ECFG,再根据一组对

18、边平行且相等的四边形是平行四边形判断出四边形EFGC是平行四边形,然后根据平行四边形的对边平行证明;(2)求出FE、BE的长,再利用勾股定理列式求出AF的长,根据平行四边形的性质可得FEC和CGF全等,从而得到SFEC=SCGF,再根据S阴影=S扇形BAC+SABF+SFGCS扇形FAG列式计算即可得解解答:(1)证明:在正方形ABCD中,AB=BC=AD=2,ABC=90,BEC绕点B逆时针旋转90得到ABF,ABFCBE,FAB=ECB,ABF=CBE=90,AF=EC,AFB+FAB=90,线段AF绕点F顺时针旋转90得线段FG,AFB+CFG=AFG=90,CFG=FAB=ECB,EC

19、FG,AF=EC,AF=FG,EC=FG,四边形EFGC是平行四边形,EFCG;(2)解:AD=2,E是AB的中点,FE=BE=AB=2=1,AF=,由平行四边形的性质,FECCGF,SFEC=SCGF,S阴影=S扇形BAC+SABF+SFGCS扇形FAG,=+21+(1+2)1,=点评:本题考查了正方形的性质,全等三角形的判定与性质,旋转变换的性质,勾股定理的应用,扇形的面积计算,综合题,但难度不大,熟记各性质并准确识图是解题的关键3(2014云南昆明,第22题8分)如图,在ABC中,ABC=90,D是边AC上的一点,连接BD,使A=21,E是BC上的一点,以BE为直径的O经过点D.(1) 求证:AC是O的切线;(2) 若A=60,O的半径为2,求阴影部分的面积.(结果保留根号和)考点:切线的判定;阴影部分面积.分析:(1)连接OD,求出A=DOC,推出ODC=90,根据切线的判定推出即可;(2)先求出的面积,再求出扇形ODC的面积,即可求出阴影部分面积解答:(1)证明:如图,连接OD ,ABC=90,OD为半径,AC是O的切线;(2)解:, 在中, 点评:本题考查了等量代换、切线的判定、三角形面积、扇形面积等知识点的应用,主要考查学生的推理能力.系列资料

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服