ImageVerifierCode 换一换
格式:DOC , 页数:6 ,大小:120KB ,
资源ID:7717621      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/7717621.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【xrp****65】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【xrp****65】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(初一数学竞赛系列讲座(9)应用题(一).doc)为本站上传会员【xrp****65】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

初一数学竞赛系列讲座(9)应用题(一).doc

1、初一数学竞赛系列讲座(9)应用题(一)一、 知识要点1、 应用题是中学数学的重要内容之一,它着重培养学生理解问题、分析问题和解决问题的能力,解应用题最主要的方法是列方程或方程组。2、 列方程(组)解应用题的一般步骤是:(1) 弄清题意和题目中的数量关系,用字母表示题目中的一个未知数;(2) 找出能够表示应用题全部含义的一个相等关系;(3) 根据这个相等关系列出方程;(4) 解这个方程,求出未知数的值;(5) 写出答案(包括单位名称)。3、行程类问题行程类问题讨论速度、时间和路程之间的相互关系。它们满足如下基本关系式: 速度时间=路程 4、数字类问题 数字类问题常用十进制来表示数,然后通过相等关

2、系列出方程。 解数字类问题应注意数字间固有的关系,如:连续整数,一般设中间数为x,则相邻两数分别为x-1、x+1;连续奇(偶)数,一般设中间数为x,则相邻两数分别为x-2、x+2。二、 例题精讲例1 从甲地到乙地的公路,只有上坡路和下坡路,没有平路。一辆汽车上坡时每小时行驶20千米,下坡时每小时行驶35千米,。车从甲地开往乙地需9小时,乙地开往甲地需小时,问:甲、乙两地间的公路有多少千米?从甲地到乙地须行驶多少千米的上坡路?(第五届华杯赛复赛题)分析 本题用方程来解简单自然。解 设从甲地到乙地的上坡路为x千米,下坡路为y千米,根据题意得方程组解这个方程组有很多种方法。例如代入消元法、加减消元法

3、等。由于方程组系数比较特殊(第一个方程中x的系数恰好是第二个方程中y的系数,而y的系数也恰好是第二个方程中x的系数),也可以采用如下的解法:(1)+(2)得 (x+y)( +)=9+所以 x+y= (3)(1)-(2)得 (x-y)( -)=9-所以 x-y= (4)由(3)、(4)得 x=所以甲、乙两地间的公路长210千米,从甲地到乙地须行驶140千米的上坡路。例2 公共汽车每隔x分钟发车一次,小宏在大街上行走,发现从背后每隔6分钟开过来一辆公共汽车,而每隔分钟迎面开来一辆公共汽车。如果公共汽车与小宏行进的速度都是均匀的,则x等于 分钟。(第六届迎春杯初赛试题)分析:此题包括了行程问题中的相

4、遇与追及两种情况。若设汽车速度为a米/每秒,小宏速度为b米/每秒,则当一辆汽车追上小宏时,另一辆汽车在小宏后面ax米处,它用6分钟追上小宏。另一方面,当一辆汽车与小宏相遇时,另一辆汽车在小宏前面ax米处,它经过分钟与小宏相遇。由此可列出两个方程。解:设汽车速度为a米/每秒,小宏速度为b米/每秒,根据题意得 两式相减得 12a=72b 即a=6b 代入可得x=5评注:行程问题常分为同向运动和相向运动两种,相遇问题就是相向运动,而追及问题就是同向运动。解这类问题分析时往往要结合题意画出示意图,以便帮助我们直观、形象地理解题意。例3 摄制组从A市到B市有一天的路程,计划上午比下午多走100千米到C市

5、吃午饭。由于堵车,中午才赶到一个小镇,只行驶了原计划的三分之一,过了小镇,汽车赶了400千米,傍晚才停下来休息。司机说,再走从C市到这里路程的二分之一就到达目的地了。问A、B两市相距多少千米?(第五届华杯赛决赛试题)分析:本题条件中只有路程,没有时间和速度,因而应当仔细分析各段路程之间的关系。解:如图,设小镇为D,傍晚 汽车在E 休息 A D C E B 由已知, AD是AC的三分之一,也就是AD=DC 又由已知,EB=CE 两式相加得:AD+ EB=DE因为DE=400千米,所以AD+ EB=400=200千米,从而A、B两市相距400+200=600千米评注:行程问题常通过画行程示意图来帮

6、助我们思考。例4 有编号为、的3条赛艇,其在静水中的速度依次为每小时v1、v2、v3千米,且满足v1 v2 v3 v 0,其中v为河流的水流速度。它们在河流上进行追逐赛,规则如下: (1) 3条赛艇在同一起跑线上同时出发,逆流而上,在出发的同时,有一浮标顺流而下; (2) 经过1小时,、号赛艇同时掉头,追赶浮标,谁先追上谁为冠军。在整个比赛期间各艇的速度保持不变,则比赛的冠军为 解:经过1小时,、号赛艇同时掉头,掉头时,各艇与浮标的距离为: S i=(vi-v)1+v1= vi 1(i=1、2、3) 第i号赛艇追上浮标的时间为:(小时)由此可见,掉头后各走1小时,同时追上浮标,所以3条赛艇并列

7、冠军。评注:顺流速度=静水速度+水流速度;逆流速度=静水速度-水流速度。例5在一环行轨道上有三枚弹子同时沿逆时针方向运动。已知甲于第10秒钟时追上乙,在第30秒时追上丙,第60秒时甲再次追上乙,并且在第70秒时再次追上丙,问乙追上丙用了多少时间?(第11届希望杯竞赛培训题)解:设甲的运动速度是 乙的运动速度是,丙的运动速度是设环形轨道长为L。甲比乙多运动一圈用时50秒,故有 甲比丙多运动一圈用时40秒,故有 可得到 甲、乙、丙初始位置时,乙、丙之间的距离甲、丙之间距离甲、乙之间距离()30( )10; 乙追上丙所用时间秒所以第110秒时,乙追上丙评注:相遇问题的关系式是:路程和=速度和时间;追

8、及问题的关系式是:追及路程=速度差时间。例6 一个三位数,三个数位上的数字和为17,百位上的数比十位上的数大7,个位上的数是十位上数的3倍,求这个三位数。解:设十位上的数为x,则个位上的数为3 x,百位上的数是x+7由题意得:3 x+x+ x+7=17,x=2这个三位数是:100(x+7)+10 x+3 x=926答:这个三位数是926评注:数字问题常设出数位上的数字,再用十进制把数表示出来。例7 两个三位整数,它们的和加1得1000,如果把大数放在小数的左边,并在这两数之间点上一个小数点,则所成的数正好等于把小数放在大数的左边,中间点一个小数点所成的数的6倍,求这两个数。解:设大数为x,则小

9、数为999-x,由题意得 解这个方程得:x=857, 999-x=142答:大数为857,小数为142。例8 一辆卡车在公路上匀速行驶,起初看到里程碑上的数字为,过了1小时里程碑上的数字为,又行驶了1小时里程碑上的数字为,求每次看到的数字和卡车的速度。分析:相等关系是前一小时走的路程=后一小时走的路程。解:依题意得:-=-,即+=2,所以 (10A+B)+(100A+B)=2(10B+A),整理得6A=B因为A、B取1到9的自然数,所以只有A=1,B=6故3次看到的数字分别是16,61,106,卡车的速度为45千米/时。评注:本题得到的是一个不定方程,通过A、B是1到9的自然数来求出A、B。例

10、9 在黑板上从1开始,写出一组连续的自然数,然后擦去了一个数,其余的平均值为,试问擦去的数是什么数?分析:设出擦去的数,用平均值为来估计出写出的自然数,从而求出擦去的数。解:设写出了n个自然数1,2,n中擦去的是k,则由题意得:即因为n是自然数,且n-1必须是17的倍数,所以n=69于是由,可解得k=7,即擦去的数为7。评注:本题运用了放缩原理来得出n的范围,从而确定自然数n的值,放缩法是数学竞赛中常用的方法。三、 巩固练习选择题1、甲、乙二人从M地同时出发去N地,甲用一半的时间以每小时a千米的速度行走,另一半的时间以每小时b千米的速度行走;乙以每小时a千米的速度行走一半的路程,另一半路程以每

11、小时b千米的速度行走。若ab,则( )先到达N地。A、甲 B、乙 C、二人同时到达 D、不确定2、已知游艇在静水中的航速为每小时10千米,某一旅游团乘该游艇在黄河顺水航行2小时,又用3小时返回出发地,求该团所走的航程是( )A、24千米 B、12千米 C、48千米 D、40千米3、某人从A地步行到B地,当走到预定时间时,离B地还有0.5千米;若把步行速度提高25%,则可比预定时间早半小时到达B地。已知AB两地相距12.5千米,则某人原来步行的速度是( )A、2千米/时 B、4千米/时 C、5千米/时 D、6千米/时4、一个两位数,十位上的数与个位上的数的和是7,若十位上的数与个位上的数对换,现

12、在的两位数与原来的两位数的差是9,则现在的两位数是( )A、43 B、34 C、25 D、525、在由两个不同数字组成的所有两位数中,每个两位数被其两个数字之和除时,所得的商的最小值是( )A、1.5 B、1.9 C、3.25 D、4.3756、一个插入一个一位数(包括0),就变成一个三位数,如:72中间插入6后变成了762。有些两位数中间插入某个一位数后变成的三位数,是原来两位数的9倍,这样的两位数有( ) (第六届祖冲之杯数学邀请赛试题)A、1个 B、4个 C、10个 D、超过10个填空题7、早晨8点多钟,有两辆汽车先后离开化肥厂,向幸福村开去。两辆汽车的速度都是每小时60千米,8点32分

13、时,第一辆车离开化肥厂的距离是第二辆车的3倍。到了8点39分时,第一辆车离开化肥厂的距离是第二辆车的2倍。则第一辆车是8点 分离开化肥厂的.8、甲、乙两个同学从A地到B地,甲步行的速度为每小时3千米,乙步行的速度为每小时5千米,两人骑自行车的速度都是每小时15千米。现在甲先步行,乙先骑自行车,两人同时出发。走了一段路程后,乙放下车步行,甲走到乙放车处改骑自行车,以后不断交替行进,两人恰好同时到达B地。甲走全程的平均速度是 千米/小时。(第六届迎春杯初赛试题)9、一船从重庆到上海要5昼夜,而从上海到重庆要7昼夜,那么有一木排从重庆顺流漂到上海要 昼夜10、一个六位数的4倍是,则这个六位数是 11

14、、有四个正整数,其中任三个数的算术平均数与第四个数的和,分别等于29、23、21、19,则这四个数中最大的一个是 12、一个两位自然数等于它的十位数字与个位数字之和的3倍,则这样的两位自然数的个数是 解答题13、一列客车的速度是60千米/时,一列货车的速度是45千米/时,货车比客车长135米,如果两车在平行的轨道上同向行驶,客车从后面赶上货车,它们交叉的时间是1分30秒,求各车的长度;如果这两车在平行的轨道上相向行驶,它们交叉时需要多少时间?14、甲、乙两人在一条长400米的环形跑道上跑步,若同向跑步每隔分钟相遇一次,若反向跑步则每隔40秒相遇一次,求甲、乙两人的速度(甲比乙跑得快)。15、某

15、人由甲地去乙地,如果他从甲地先骑摩托车行12小时,再换骑自行车行9小时,恰好到达乙地。如果他从甲地先骑自行车行21小时,再换骑摩托车行8小时,恰好也到达乙地。问:全程骑摩托车需要几小时到达乙地?(第四届华杯赛初赛试题)16、快、中、慢三辆车同时从同一地点出发,沿同一公路追赶前面的一个骑车人。这三辆车分别用6分钟、10分钟、12分钟追上骑车人。现在知道快车每小时走24千米,中车每小时走20千米,问慢车每小时走多少千米?(第一届华杯赛决赛试题)17、有一个两位数,它的十位数字与个位数字的和是8,并且这个两位数除以十位上的数字与个位上的数字的差,所得的商为11,余数为5,求这个两位数。18、一个十位数字为0的三位数,它恰好等于它的数字和的67倍;交换它的个位与百位数字后得到一个新的三位数,它恰好又是它的数字和的m倍,求m的值。19、一个两位数的十位数字小于个位数字,当数字交换位置后所得的新的两位数与原数之和大于70而小于90,求这样的两位数。20、今有一个三位数,其各位数字均不相同,如将此三位数的各位数字重新排列,必得一个最大数和一个最小数,且此两数之差恰为原来的那个三位数,求原来的三位数。

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服