ImageVerifierCode 换一换
格式:DOC , 页数:2 ,大小:50.50KB ,
资源ID:7694460      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
图形码:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/7694460.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请。


权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4009-655-100;投诉/维权电话:18658249818。

注意事项

本文(什么是GPU计算.doc)为本站上传会员【xrp****65】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

什么是GPU计算.doc

1、 什么是GPU计算?     GPU计算或GPGPU就是利用图形处理器(GPU)来进行通用科学与工程计算。 GPU计算的模式就是,在异构协同处理计算模型中将CPU与GPU结合起来加以利用。 应用程序的串行部分在CPU上运行,而计算任务繁重的部分则由GPU来加速。 从用户的角度来看,应用程序只是运行得更快了。因为应用程序利用了GPU的高性能来提升性能。 在过去几年里,GPU的浮点性能已经上升到Teraflop级的水平。 在2006-2007年间,英伟达™(NVIDIA®)推出其叫做“CUDA”的全新大规模并行架构,从而实现了GPGPU的革命并加速了整个计算世界行业。 英伟

2、达™CUDA(NVIDIA® CUDA)架构由数以百计的处理器核心组成,这些核心能够协同工作,共同完成对应用程序中数据集的处理。 过去几年里GPGPU的成功使CUDA并行编程模型相关的编程工作变得十分轻松。 在这种编程模型中,应用程序开发者可修改他们的应用程序以找出计算量繁重的程序内核,将其映射到GPU上,让GPU来处理它们。 应用程序的剩余部分仍然交由CPU处理。 想要将某些功能映射到GPU上,需要开发者重新编写该功能,在编程中采用并行机制,加入“C”语言关键字以便与GPU之间交换数据。 开发者的任务是同时启动数以万计的线程。 GPU硬件可以管理线程和进行线程调度。 英伟达™ T

3、esla(NVIDIA® Tesla)20系列GPU基于“Fermi”架构,这是最新的英伟达™ CUDA(NVIDIA® CUDA)架构。 Fermi专为科学应用程序而进行了优化、具备诸多重要特性,其中包括:支持500 gigaflop以上的IEEE标准双精度浮点硬件、一级和二级高速缓存、ECC存储器错误保护、本地用户管理的数据高速缓存(其形式为分布于整个GPU中的共享存储器)以及合并存储器访问等等。 "GPU(图形处理器)已经发展到了颇为成熟的阶段,可轻松执行实际应用程序并且其运行速度已远远超过了使用多核系统时的速度。 未来计算架构将是并行核心GPU与多核CPU串联运行的混合型系统。"

4、 Jack Dongarra 教授 田纳西大学创新计算实验室主任 GPU(图形处理器)计算的发展历史 图形芯片最初用作固定功能图形管线。随着时间的推移,这些图形芯片的可编程性日益增加,在此基础之上 NVIDIA?(英伟达?)推出了第一款 GPU(图形处理器)。1999-2000 年间,计算机科学家,与诸如医疗成像和电磁等领域的研究人员,开始使用 GPU(图形处理器)来运行通用计算应用程序。他们发现 GPU(图形处理器)具备的卓越浮点性能可为众多科学应用程序带来显著的性能提升。这一发现掀起了被称作 GPGPU(GPU(图形处理器)通用计算)的浪潮。 此处需要解决的问题为 GP

5、GPU 要求使用图形编程语言来对 GPU(图形处理器)进行编程,如 OpenGL 和 Cg 等。开发人员需要使其科学应用程序看起来像图形应用程序,并将其关联到需要绘制三角形和多边形的问题。这一方法限制了 GPU(图形处理器)的卓越性能在科学领域的充分发挥。 NVIDIA®(英伟达™)认识到了让更多科学群体使用这一卓越性能的强大优势,决定投资来修改 GPU(图形处理器),使其能够完全可编程以支持科学应用程序,同时还添加了对于诸如 C、C++ 和 Fortran等高级语言的支持。此举最终推动诞生了面向 GPU(图形处理器)的 CUDA 架构。 CUDA 并行架构与编程模型 CUDA 并行硬件架构伴随有 CUDA 并行编程模型。该模型提供了一个抽象集合,能够支持实现精细和粗放级别的数据与任务并行处理。编程人员可以选择使用高级语言(如 C、C++ 和 Fortran)或驱动程序 API(如 OpenCL™ 和 DirectX-11 Compute)来实现并行处理。

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服