ImageVerifierCode 换一换
格式:DOC , 页数:5 ,大小:91.50KB ,
资源ID:7693670      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
图形码:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/7693670.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请


权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4009-655-100;投诉/维权电话:18658249818。

注意事项

本文(八年级下册数学《二次根式》.doc)为本站上传会员【xrp****65】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

八年级下册数学《二次根式》.doc

1、   二次根式及性质 有疑问的题目请发在“51加速度学习网”上,让我们来为你解答 ()51加速度学习网 整理 一、本节学习指导 二、知识要点 . 1、平方根与立方根 (1)、 平方根的概念:如果一个数的平方等于a,那么这个数叫做a的平方根。用表示。 例如:因为,所以25的平方根为:。 (2)、算术平方根的概念:正数a的正的平方根叫做a的算术平方根。0的算术平方根为0。用表示a的算术平方根

2、 例如:3的平方根为,其中为3的算术平方根。 (3)、立方根的概念:如果一个数的立方等于a,那么这个数就叫做a的立方根,用表示。 例如:因为,所以27的立方个跟为:。 (4)、平方根的特征: ①一个正数有两个平方根,它们互为相反数。 ②0有一个平方根,就是0本身。 ③负数没有平方根。 (5)、立方根的特征: ①正数有一个正的立方根。 ②负数有一个负的立方根。 ③0的立方根为0。 ④。 ⑤立方根等于其本身的数有三个:1,

3、0,-1。 2、二次根式 (1)、二次根式的概念:形如(a≥0)的式子叫做二次根式(二次根式中,被开方数一定是非负数,否则就没有意义,并且根式)。 (2)、 二次根式的基本性质: ① ② ③ ④ ⑤ (3)、 二次根式的乘除法 ① ② (4)、 最简二次根式的标准: ①被开方数的因数是整数,因式是整式(分母中不含根号)。 ②被开方数中不含开得尽方的因数或因式。 (5)、同类二次根式的识别:

4、 几个二次根式化简到不能再化简为止后,被开方数相同,则这几个二次根式是同类二次根式。 例如:是同类二次根式,是同类二次根式。 (6)、二次根式的加减法运算法则: 在加减运算中,一般把二次根式化简后再运算,运算时只有同类二次根式才能合并(合并时,只合并根号外的因式,被开方数不变),合并同类二次根式之后的式子作为最后的结果(注意:最后结果要尽可能最简)。 (7)、使分母不带根号(分母有理化)常用方法: ①化去分母中的根号关键是确定与分母相乘后,其结果不再含根号的因式。 i. 形如的式子,利用,分子、分母同乘以得

5、 ii. 形如的式子利用平方差公式,分子、分母同时乘以得 注意:分子、分母同时所乘以的式子必须不为0。 即如:,这样运算不一定正确,因为有可能为0。 ②化去分母中的根号,有时通过约分来解决 如: (3)、实数与数轴 a. 无理数的概念:无限不循环小数叫做无理数。 b. 实数的概念:有理数与无理数统称为实数。 c. 实数的分类: ①按实数的定义分类 ②按正负分类 d. 实数与数轴上的点之间的关系: 实数与数轴上的点是一

6、一对应的。数轴上的任一点表示的数,不是有理数,就是无理数。数轴上的任一点必定表示一个实数;反过来每一个实数都可以用数轴上的点来表示。 e. 常见的几种无理数: ①根号型:如等开方开不尽的数。 ②构造型:如1.21121112……等无限不循环小数。 ③化简后含有(圆周率)的数。 ④在今后学习中还会遇到三角函数型等。 f. 实数比较大小的几种常用方法: ①数轴比较法:将两实数分别表示在数轴上,右边的数总比左边的数大,表示在同一点上的两个数相等。 ②差值比较法:设a、b是任意两实数,若,则;若,则a

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服